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Spatial and Temporal Statistical Analysis of a Ground 
Water Level Network, Broward County, Florida

By Eric D. Swain and Roy S. Sonenshein

Abstract

The U.S. Geological Survey has developed a 
method to evaluate the spatial and temporal statis­ 
tics of a continuous ground-water level recorder 
network in Broward County, Florida. Because the 
Broward County network is sparse for most spa­ 
tial statistics, a technique has been developed to 
define polygons for each well that represent the 
area monitored by the well within specified crite­ 
ria. The boundaries of these "confidence poly­ 
gons" are defined by the endpoints of radial lines 
oriented toward the other wells. The lengths of 
these lines are determined as the statistically esti­ 
mated distances to the points at which ground- 
water levels can be predicted within specified cri­ 
teria. The confidence polygons indicate: (1) the 
areal coverage of the network, (2) locations where 
data are unavailable, and (3) areas of redundant 
data collection. Comparison with data from a non- 
continuous recorder well indicates that the confi­ 
dence polygons are a good representation of areal 
coverages.

The temporal analysis utilizes statistical tech­ 
niques similar to those used in the spatial method, 
defining variations in time rather than in space. 
Consequently, instead of defining radial distances 
to points, time intervals are defined over which 
water-level values can be predicted within a spec­ 
ified confidence. These "temporal confidence 
intervals" correspond to maximum allowable 
periods between field measurements.

To combine all results from the analyses, a 
single coefficient reflecting the spatial and tempo­ 
ral results has been developed. The coefficient is

referred to as the Spatial and Temporal Adequacy 
and Redundancy Evaluation (STARE) and is 
determined by three factors: the size of the confi­ 
dence polygon, the number of times the well is 
part of a redundant pair, and the temporal confi­ 
dence interval. This coefficient and the individ­ 
ual results of each analysis are used in evaluating 
the present network and determining future man­ 
agement decisions.

INTRODUCTION

Networks for monitoring saltwater intrusion, 
ground-water quality, and water-table elevations have 
been developed in Broward County, Ha., but these net­ 
works have not kept up with the growth in the county. 
Other networks, such as those set up by well-field oper­ 
ators for well-field protection, have not been included 
in a comprehensive ground-water monitoring system.

The U.S. Geological Survey (USGS) began 
development of a ground-water level recorder network 
in Broward County, beginning in 1940, and at present 
(1994) continuously monitors 36 wells. As the popula­ 
tion of Broward County grew and the urbanized area 
developed, new wells were installed. Some of the new 
wells were installed to develop the network; other 
wells were preexisting and were used for some other 
purpose, such as well-field analysis. New canals and 
water-management structures, changing land use, and 
expansion of municipal well fields have resulted in 
wells no longer monitoring the situations for which 
they were originally designed. A need exists to evalu­ 
ate the current ground-water monitoring network, 
develop criteria for future monitoring needs, and 
design optimal regional monitoring networks.
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The sample size of water-level measurements in 
the Broward County ground-water level monitoring 
network is large enough, both in spatial distribution of 
the wells and in temporal length of record, to perform 
statistical analyses that describe the spatial and tempo­ 
ral attributes of the water-level variations in the study 
area (fig. 1). A spatial statistical analysis of this water- 
level monitoring network can compare each well with 
every other well in the network to determine relations 
between water levels. Thus, water levels in wells that 
are similar to those in adjacent wells can be considered 
redundant. Areas between wells with unrelated water 
levels are possible locations for new wells. A method 
for determining which wells are redundant and loca­ 
tions where water-level data are lacking could facilitate 
future planning in ground-water network design.

The frequency of well measurements is also 
important in ground-water level monitoring. An inap­ 
propriate measurement interval might result in unnec­ 
essary expenditures or insufficient data. The present 
measurement scheme in the Broward County water- 
level monitoring network considers no temporal prop­ 
erties of the water levels in determining measurement 
intervals. A statistical analysis of the temporal varia­ 
tion in water levels at continuous recorder stations can 
be used to indicate time periods over which water lev­ 
els are similar. This information can be used to deter­ 
mine more efficient measurement schedules for the 36 
continuous recording wells located in the Broward 
County ground-water-level monitoring network (fig. 
2). Consideration of these factors is important in 
designing an efficient and effective measurement 
scheme.

The USGS, in cooperation with the South Flor­ 
ida Water Management District (SFWMD), conducted 
a study to: (1) develop methods for designing monitor­ 
ing networks based on mathematical models and statis­ 
tical techniques, (2) examine regional monitoring 
networks with the ultimate objective of eliminating 
existing monitoring wells that are redundant, (3) deter­ 
mine locations where additional wells are needed, and 
(4) optimize temporal measurements.

Purpose and Scope

This report documents statistical techniques 
developed for an analysis of the: (1) spatial coverage of 
a well network, (2) redundancy of a well network, and 
(3) optimal water-level measurement intervals for a

ground-water level monitoring network. Because the 
Broward County water-level well network is sparse, 
the new method defines the spatial coverage of wells in 
terms of overlapping polygons that indicate the degree 
of correlation with adjacent wells. This method more 
accurately depicts the sparseness of the data set than 
conventional geostatistical techniques. The temporal 
evaluation of the well network is similar in construc­ 
tion to the spatial method, illustrating the analogy 
between spatial and temporal statistics. This report 
describes how the results from the spatial and temporal 
analysis can be used to develop evaluation criteria for a 
well monitoring network.

Description of Study Area

Broward County is in southern Florida and 
encompasses an area of about 1,220 mi2. The study 
area contains a highly regulated network of manmade 
canals and is limited to the part of Broward County east 
of Water-Conservation Areas 2A, 2B, and 3A (fig. 1). 
The Biscayne aquifer is the principal surficial aquifer 
in Broward County. This sole-source aquifer (Federal 
Register Notice, 1979) consists of highly permeable 
limestone and calcareous sandstone that have hydraulic 
conductivities of about 1,000 ft/d or more (Fish, 1988). 
Hydraulic conductivities often exceed 10,000 ft/d in 
solution-riddled formations, which is typical of south- 
em and eastern Broward County.

The highly regulated network of manmade 
canals within the study area (fig. 1) supplies water to 
and drains water from the Biscayne aquifer, thus, pro­ 
ducing a major effect on the ground-water flow system. 
The canal levels are regulated by numerous gates and 
pumps that provide indirect control of the ground- 
water levels. Pumping at major municipal well fields 
also affects the ground-water levels.

The 36 wells in the Broward County ground- 
water level monitoring network (fig. 2) are equipped 
with continuous monitors that record water levels at 
hourly intervals. The well numbers, site identification, 
period of record, well and casing depths, and casing 
diameters are listed in table 1. The data collected at 
these wells, all completed in the Biscayne aquifer, are 
used to determine daily maximum water levels and are 
stored by the USGS in a computerized data base. For 
most of the wells, the period of record was from 
October 1973 to January 1991, constituting a contem­ 
poraneous data base for ground-water levels in the 
study area.
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Table 1 . Well inventory data for the Broward County ground-water level monitoring network

Well number 
.(% 2)

F-291

G-561

G-616

G-617

G-820A

G-853

G-1213

G-1215

G-1220

G-1221

G-1222

G-1223

G-1224

G-1225

G-1226

G-1260

G-1262

G-1315

G-1316

G-1322

G-1472

G-1473

G-1636

G-2030

G-2031

G-2032

G-2033

G-2034

G-2035

G-2147

G-2376

G-2395

G-2443

G-2444

G-2495

S-329

Site identification

260010080085001

260545080082001

261710080135001

260515080202101

261144080094601

261434080071901

261734080111301

261645080064701

260752080084701

260458080134801

260025080230401

260219080141101

260252080085301

260032080135701

260053080105701

261903080065601

261152080115201

261708080090801

261441080111301

260253080184801

255916080085401

255918080091801

255807080224301

261837080163001

261534080165801

260821080185101

261141080163401

260653080184901

260040080104401

261501080060701

260753080253701

261147080114501

261337080103401

261238080105501

260215080214501

260657080122301

Period of record

10-01-73-01-01-91

10-01-73-01-01-91

10-01-73-01-01-91

10-01-73-01-01-91

10-01-73-01-01-91

10-01-73-01-01-91

10-01-73-01-01-91

10-01-73-01-01-91

10-01-73-01-01-91

10-01-73-01-01-91

10-01-73-01-01-91

10-01-73-01-01-91

10-01-73-01-01-91

10-01-73-01-01-91

10-01-73 - 01-01-91

10-01-73-01-01-91

10-01-73-01-01-91

10-01-73 - 01-01-91

10-01-73-01-01-91

10-01-73-10-11-89

01-01-74 - 01-01-91

10-01-73 - 01-01-91

10-01-73-01-01-91

10-01-73-09-30-89

10-01-73-01-01-92

10-01-73-01-01-91

10-01-73-01-01-91

10-01-73-01-01-91

10-01-73-01-01-91

10-01-74-01-01-91

06-20-84-01-01-91

02-09-84-01-01-91

01-01-87-01-01-91

01-01-87-01-01-91

02-08-90-01-01-92

10-01-73-01-01-91

Well depth 
(feet)

107

20

15

29

100

27

20

20

20

20

20

20

20

20

20

90

19

14

15.5

13

20

132

24

22

22

22

23

22

52

16

15

80

145

150

20

68

Casing depth 
(feet)

107

20

15

28

99

27

11.5

14

20

12

11.5

12

12

11

14

90

19

14

15.5

13

20

132

24

21

21

21

21

21

50

16

14

78

66

83

7.1

68

Casing 
diameter 
(inches)

6

6

6

6

4

4

5

5

5

5

5

5

5

5

5

6

7

4

4

4

4

8

6

6

6

6

6

6

4

6

4

2.5

8

8

6

4
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Background

Hydrogeologic, statistical, and linear program­ 
ming techniques are used in the design of a ground- 
water network. Loaiciga and others (1992) surveyed 
approaches to ground-water quality monitoring design; 
they emphasized the importance of defining the objec­ 
tives and appropriate methods and surveyed hydrogeo- 
logic, statistical, numerical simulation, and variance- 
based approaches.

One variance-based approach to ground-water 
quality monitoring network design is the optimization 
method (Loaiciga and others, 1992). With this method, 
the network design is posed as a mathematical pro­ 
gramming problem, which has an objective function 
(for example, minimizing the estimation variance) and 
constraints (governing flow equations, statistical accu­ 
racies, and areal coverage of the network). The dis­ 
advantages to the optimization method are the simplifi­ 
cations of the hydrogeologic setting that are necessary 
to convert the parameters to constraints and the lack of 
consideration for interactions of ground-water moni­ 
toring variables, such as surface-water controls and 
aquifer injection or pumping parameters. These factors 
are accounted for implicitly in purely statistical analy­ 
ses.

functions represent the degree of similarity between 
two sets of data or between different parts of the same 
data set. In the temporal and spatial methods, both 
functions are based on the variance and covariance of 
the sets of data and are consequently interrelated.

The basic statistics used to define a single set of 
data are the mean and the variance. The arithmetic 
mean is considered the most useful form of the mean in 
hydrology (Yevjevich, 1982) and is:

N
x =   Y (1)

where x is the mean, N is the total number of data 
points, and X} is the value of the ith observation of x. If 
x is some quantity at a fixed location, xi is its value.

The variance, ax2 , which is always equal to or 
greater than zero, describes the dispersion of the data 
and is:

1 JV-l

(2)
/ = 1 i = 1

When two sets of data, x and y, are being compared, a 
dimensionally similar function defines their linear 
dependence. The covariance is:

STATISTICAL METHODS

Analyses using the parameters described in sub­ 
sequent sections of this report are divided into the spa­ 
tial and temporal methods. The spatial method provides 
a graphical depiction of the confidence polygon (CP), a 
polygon around each well whose boundary is com­ 
posed of the radial distances to which values can be 
estimated within a certain accuracy. These values are 
compared to evaluate the spatial adequacy of the 
ground-water level network. The temporal method uses 
the autovariogram to define measurement periods for 
given accuracies at specific sites.

Network Evaluation

The basic statistical tools used in this ground- 
water level network evaluation and the measurement 
scheme design are the variogram and correlation func­ 
tions. Both functions have their counterparts in the 
temporal domain (signified by the prefix auto-). These

1 JV-l

(3)
JV-l

where vxy is the covariance between x and y. If x and y 
are replaced by points x and x+i in the same set of data 
with a fixed time lag i between them, oXfV+T is the 
autocovariance and is a function of the time lag (T) 
between points. Unlike the variance, the covariance 
and autocovariance can be negative.

Parameters for Defining Spatial Variations

The parameters considered for this report that 
define spatial variations in a ground-water level net­ 
work are the correlation coefficient and the variogram. 
If the covariance is divided by the square root of the 
product of the variances, a dimensionless parameter 
results, the correlation coefficient p:

6 Spatial and Temporal Statistical Analysis of a Ground-Water Level Network, Broward County, Florida



p = xy (4)

p has a value of 1 for perfectly correlated data sets, 0 
for linearly uncorrelated values, and -1 for perfectly 
correlated values. The standard t-test uses the correla­ 
tion coefficient and the number of data points to define 
a parameter t (Yevjevich, 1982):

t = (5)

The parameter t follows the Student distribution 
(Beyer, 1987) with (N - 2) degrees of freedom. The 
percent area under the curve at a given value in the 
Student distribution is the confidence level of the sig­ 
nificance of the correlations between the two data sets. 
Although the correlation coefficient is an indication 
for the linear dependence between data sets and yields 
a statistic for significance of correlation, it does not 
quantify the variation between data in a form easily 
used.

One of the main objectives of a spatial statistical 
analysis is the definition of the variation between mea­ 
surements at two points. This can be used to determine 
the accuracy of values estimated at one measurement 
point from the data at the other measurement point. The 
difference between the value in data set x at time / and 
the value in data set y at time / is referred to as *,  - v,, 
which will be designated as 8,-. Thus, the mean value of 
8 is:

N N
6 = =x-y (6)

The variance of the quantity 6,, as in equation 2, is:

N-l - 2 -2
(7)_

*F is referred to as the variogram. With the definitions 
of 6, and 5 and expanding the quadratic expression, 
equation 7 becomes:

N-l

f,?,
' 3 ^T\ 2

N-l 

 /= 1

(8)

With rearrangement of equation 8, the result is:

The variogram is the variance of the differences 
between measurements x and y. The statistical distri­ 
bution that has a variance equal to *F describes the 
uncertainty in values estimated for one sample based 
on values only at the other. A common function used 
in spatial statistics is the semivariogram y = *F/2 (Coo­ 
per and Istok, 1988), which is the arithmetic average 
variance minus the covariance. The semivariogram is 
a function of spacing and, theoretically, is zero at zero 
spacing and approaches the average variance at large 
spacings. Although the definitions of the variogram 
and semivariogram vary (Delhomme, 1978; Gam- 
bolati and Volpi, 1979; Chirlin and Dagan, 1980; Coo­ 
per and Istok, 1988; and Dagan, 1989), the definitions 
above will be used in this report.

There are several theoretical equations describ­ 
ing the semivariogram as a function of spacing. 
Because the empirical semivariogram can only be 
determined at discrete measurement points, an equa­ 
tion must be selected to estimate the value of the semi­ 
variogram at intermediate points. The proper form for 
semivariogram equations based on stochastic flow 
equations has been researched (Chirlin and Dagan, 
1980). Several accepted forms exist (Gambolati and 
Volpi, 1979). One such equation is the spherical:*']

+ c for t,<a only(W)

where £, is spacing, a is an empirical constant, and c is 
the variance due to uncorrelated errors called the 
"nugget." This function is depicted in figure 3. Two 
more theoretical semivariogram equations are the 
exponential:

- Jr 
l-e aY = cr

and the Gaussian (fig. 3):

+c (11)

= o2 l-e (12)

Theoretically, the value of c is zero, but often uncorre­ 
lated errors in field data make a positive c value 
applicable (Dagan, 1989).

Statistical Methods
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Parameters for Defining Temporal Variations

The similarities between spatial and temporal 
statistics become apparent when the covariance and 
autocovariance are compared. The spacing £ and the 
time lag i are analogous parameters in space and time, 
respectively. Thus, the variogram *F as expressed in 
equation 9 has an analogy in temporal statistics, logi­ 
cally referred to by the authors as the autovariogram T:

T = 2(oz -o
^ X

(13)

where ar;c+t is the autocovariance between data at 
times x and x +1. As *F is a function of £,, T is a func­ 
tion of T. The autovariogram and the variogram allow 
determination of the accuracies of estimates.

The autocorrelation coefficient pt is defined as:

(14)

The relation between the variance, autocovariance, 
autocorrelation coefficient, and autovariogram is iden­ 
tical to the relation between the variance, covariance, 
correlation coefficient, and variogram.

The parameters p, *P, and y yield information as 
to the correlation between values at wells and the accu­ 
racies of estimates between wells. The parameters pt 
and T yield information about the correlation between 
values at an individual well taken at different times and 
the accuracies of estimates at one time based on known 
values at another time. These statistical parameters are 
used to determine redundancy of wells, locations where 
wells are needed, and optimum measurement intervals 
at each well.

Spatial Method

A method commonly used in ground-water net­ 
work analysis for water quality and water levels is 
Kriging (Olea, 1975). This method produces a statisti­ 
cal uncertainty in estimates of unmeasured sites as 
functions of distance between measurement location 
and determining a best estimate at unmeasured loca­ 
tions by the averages of the values at known points 
weighted inversely to their uncertainty at the unknown 
point by minimizing the Kriging variance. Kriging can 
be applied to network design by finding the point with 
maximum uncertainty based on the assumed statistical 
uncertainty functions, the semivariograms (Cooper and 
Istok, 1988).

Kriging has been incorporated into larger 
schemes for network design. A random search method 
can be used to create a series of alternative network 
designs. The design with the least uncertainty in esti­ 
mates is considered optimal (Journel and Huijbregts, 
1978). Rather than design a new network, an existing 
network can be improved by adding measurement loca­ 
tions at the points of minimum calculated estimation 
error to reduce the uncertainty by a desired amount 
(Delhomme, 1978; McBratney and others, 1981; and 
de Marsily, 1986). Kriging can be combined with 
mathematical programming by using the Kriging 
uncertainty as the objective function and the Kriging 
system equations as the constraints (Bardossy and Bog- 
ardi, 1983; Carrera and others, 1984).

Details that are not measured with the applica­ 
tions of Kriging for network design are implicitly esti­ 
mated, and no additional information can be derived 
than inherent in the original data (Delhomme, 1979). 
Thus, the uncertainty at a proposed measurement point 
is estimated based on the values at known points and 
assumed statistical functions (the variogram) between 
the points. This can result in significant errors for 
sparse networks (Seo and others, 1990). When adding 
proposed estimation locations to an existing network, 
the accuracy of the entire network is assumed to 
improve. However, real data at these proposed estima­ 
tion locations do not exist, and the improvement in the 
network must also be an estimate.

Errors of estimation are inevitable in Kriging 
because of the limited information in the field data. An 
approach that defines sparse networks using the 
regional effectiveness of each measurement location 
would more reasonably reflect the lack of data. Also, 
the approach should reflect that the network is too 
sparse to make interpolated estimates as in Kriging, 
and an estimate is only made by measuring a nearby 
well. Kriging defines each needed measurement loca­ 
tion as a point. Besides incorrectly inferring that the 
location can be accurately defined on such a precise 
scale, even in a sparse network, standard Kriging does 
not include all factors, such as physical obstructions, 
legal permissions, and local phenomena, which deter­ 
mine an actual measurement location. These consider­ 
ations provide a new statistical scheme for yielding 
general information for a sparse network.

In a sparse network, Kriging can be considered 
inappropriate because of insufficient data. An appro­ 
priate scheme would delineate the area around each
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well within which water levels can reasonably be pre­ 
dicted by the well. Thus, the user admits the network is 
too sparse to interpolate between wells as in Kriging. 
Water levels near each well location can be estimated 
with greater accuracy than water levels at points farther 
from the well because nearby values tend to be more 
alike than distant values. This property can be statisti­ 
cally defined using information from all other wells so 
radial distances can be defined from each well to points 
of given estimation confidence. The boundary connect­ 
ing the endpoints of these radial lines encloses an area 
representative of the spatial monitoring confidence of 
the well. Such delineation of a CP for each measure­ 
ment location would be made according to the criteria 
of prediction within certain limits at a given level of 
confidence. Instead of defining the accuracy required 
as a Kriged error (or uncertainty variance), it can be 
stipulated as specific error limits on the measurement 
itself within a level of confidence. This is a quantity 
more amenable to measurement criteria.

Because the boundary of the CP follows the indi­ 
vidual radial distances determined by the statistical 
relations between the water levels at the location of 
interest and all other measurement locations, a regional 
form of Kriging is not used and smaller scale variations 
are retained. Locations where additional measurements 
are needed are indicated by areas between the CPs. 
Areas where CPs overlap indicate effective redundancy 
in measurements between wells. Varying the accuracy 
criteria varies the size of the CPs; CP sizes would also 
vary with the season considered in the analysis. The 
higher recharge variability of the wet season causes 
more water-level fluctuations than in the dry season. 
Additionally, municipal well pumpage varies with the 
season with a subsequent effect on ground-water level 
fluctuation.

The basis of the spatial analysis is to calculate 
the semivariogram for each pair of wells. Unlike the 
technique used in conventional Kriging, the semivario­ 
gram is not evaluated as a single function of distance 
and angle but is retained as a separate function for each 
pair of wells. Thus, the individual idiosyncracies that 
relate to each pair of wells are not lost in a generalized 
variogram function for the area. This is an attempt to 
make the most of a sparse network. This analysis 
reduces the generalization in the method and allows the 
detection of local discontinuities. A Geographic Infor­ 
mation System (GIS) interface allows graphical repre­ 
sentations of the results for evaluation.

The data for each pair of wells are initially sorted 
by time to ensure that a one-to-one correspondence 
exists. For each comparison, only the days that have 
data at both wells are used. The software package 
STATIT 1 (Statware Inc., 1990) contains specific rou­ 
tines to calculate statistical parameters. Programs are 
used to call these STATIT routines when needed. 
These programs are listed in appendix 1. The mean, 
variance, correlation coefficient, and variogram are 
calculated for each well pair. The standard t-test (eq. 5) 
is performed on the correlations for each pair. If there 
is no significant correlation between the wells, the var­ 
iogram is not applicable.

If a statistical distribution can be fit to the differ­ 
ences in water levels at each well, confidence intervals 
can be predicted at any location between the wells and 
extrapolated beyond the wells. A distance from each 
well can be calculated that has the value of the semivar­ 
iogram ty which indicates a desired confidence in esti­ 
mates made at the point. This method for a hypothetical 
well network and a CP for one well (no. 1) in the net­ 
work is shown in figure 4.

To determine the semivariogram value for the 
desired confidence, the statistical distribution of the 
differences in well water levels must be defined. Most 
statistical quantities in hydrology can be defined by the 
normal or log-normal distributions. The normal distri­ 
bution as applied to this situation is:

/(§ ) = (15)

where/(8,-j is the density function value at 8=8,. This is 
the normal distribution of the differences between x 
and y, which has a mean of 5 and a variance 4/. The 
natural log-normal distribution that applies to this situ­ 
ation is:

/(«,-) =
, (16)

where 8L is the mean -of the values of In(^) and *P^ is 
the variance of the values

lrThe use of firm, trade, manufacturer, and product names in 
this report is for identification purposes only and does not consti­ 
tute endorsement by the U.S. Geological Survey.
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EXPLANATION 
II CONFIDENCE POLYGON * 5

  RADIUS OF CONFIDENCE POLYGON 
ORIENTED TOWARD OTHER WELL

  2 WELL LOCATION AND NUMBER

ft POINT OF DESIRED CONFIDENCE, WHERE yd IS ATTAINED

Figure 4. Hypothetical well network with polygon connecting points of equal desired confidence.
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To determine which distribution (eq. 15 or 16) 
should be used, the Shapiro-Wilk test for normality 
(Shapiro and Wilk, 1965) is performed on the values of 
8, and of /«(§,). This test is implemented using a 
STATIT routine. The test indicates which distribution 
(eq. 15 or 16) best represents the data. After the deter­ 
mination has been made, a maximum allowable error in 
estimation e = desired accuracy in predicting water 
level in well y from well x must be selected. Addition­ 
ally, a confidence level P = percent of data that can be 
predicted at well y by well x within maximum allow­ 
able error e must be selected. This maximum allowable 
error e is equal to the maximum allowable absolute 
value of 8, - 5 for the accuracy of prediction desired. 
For the selected probability distribution, a value of *F is 
determined so that the percentage of the distribution 
curve area between ordinate values of +e and -e is 
equal to P . This is determined using the standard nor­ 
mal variate Z which, in the case of the normal distribu­ 
tion, is:

Z =
(8;-8)*

(17)

and for the log-normal distribution, the derivation in 
appendix 2 yields:

Z =
In

(18)

Standard statistic tables (Snedecor and Cochran, 1982) 
give values under the normal curve for values of Z. 
Thus, for the desired value of P (area under normal 
curve) and for an e, a value of Z yields the necessary 
value of *¥. This value, divided by two, yields the 
semivariogram value y^.

The value of the variogram between each pair of 
wells is calculated according to equation 9. Dividing 
this value by two gives the value of the semivariogram 
corresponding to the distance between the two wells jf. 
To define the semivariogram as a function of distance 
for all intermediate points between the wells, one of the 
empirical models as described in equations 10,11, and 
12 must be selected. To select the model, the values of 
the semivariogram as a function of distance to each 
well are plotted to determine the general shape of the 
curve.

After equations 10, 11, or 12 are selected as the 
"best" semivariogram representation, the equation is 
applied along each of the radial lines to other wells 
(fig. 4). Values of c and a are selected in the equation 
so that the semivariogram attains the value 7f deter­ 
mined from the field values at the distance of the other 
well. Because the coefficient c is ideally zero, this 
leaves the calculation of the value of a only. A different 
value of a is calculated for each radial line from a well. 
The semivariogram equation can be used to determine 
the value of distance £,=h. This is the distance to the 
point having the desired value of the semivariogram yd.

A separate value of h is determined for each 
radial line (fig. 4). The points on each radial line, a dis­ 
tance (h) away from well 1, are connected to form a 
boundary that encloses the CP as shown in figure 4. For 
example, there are eight wells in figure 4, so there are 
seven well pairs associated with well 1 (well 1 with 
wells 7 and 8), and there will be seven values of ̂ cal­ 
culated. This is done after calculating statistics and 
applying the t-test for correlations on each pair for 
many days. Several limitations of this polygon depic­ 
tion are:

1. It is assumed that the radial distance to the edge of the CP 
changes linearly between known points on the edge of 
the CP. If a large angle exists between two radial lines, 
there is substantial error of estimation in the intervening 
region.

2. A distant well, such as well 2 (fig. 4), might correlate 
with the central well, but a hydrologic condition in the 
intervening area, such as a well field, might indicate that 
ground-water levels in the polygon cannot be accurately 
predicted. This is an inherent problem with conventional 
Kriging as well as any statistical analysis. Variogram 
relations with closer wells could detect this problem by 
defining the variograms to these closer wells.

3. Because of the highly correlated wells, the semivario­ 
gram equation could indicate that the distance to the 
boundary of the CP is farther away than the well itself. 
This situation is depicted between wells 1 and 4 in figure 
4. The semivariogram relation between wells 1 and 4 
does not indicate what occurs beyond well 4, so it can be 
erroneous to extend the polygon beyond this well.

4. There is no proof that the "best" semivariogram function 
applies between wells where no data exist. The function 
can only be selected on the basis of data at the existing 
well distances.

5. The wells at the outer edges of the network have no data 
for statistical relations exterior to the network for deter­ 
mination of CP radii, so the CPs of these wells tend to be

12 Spatial and Temporal Statistical Analysis of a Ground-Water Level Network, Broward County, Florida



truncated on their sides facing outward from the net­ 
work. However, if the exterior wells are considered the 
boundary of the network, the CP area outside the net­ 
work does not contribute to the network.

6. Whichever statistical distribution is selected as the best 
representation of the data, the data cannot be expected to 
fit it without some error.

Despite these limitations, there are several advantages 
to the polygon depiction that make it very useful for 
assessing the adequacy of a sparse network. These 
advantages are:

1. The polygon gives a good visual description of the best 
well to predict water levels in an approximated area 
(assuming no interpolation between wells) and the exte­ 
rior areas where predictions cannot be made.

2. Redundant wells can be identified by overlapping poly­ 
gons.

3. Areas that need wells to accurately define the water lev­ 
els can be easily located by gaps between the polygons.

4. When a well has a missing record and data from nearby 
wells are needed to estimate this record, the polygons 
indicate which adjacent well is best suited for this pur­ 
pose. For example, in figure 4, well 4 best approximates 
the values for well 1.

5. Wet and dry seasons can be analyzed separately because 
wells redundant in one season might not be redundant in 
the other season.

6. By retaining individual semivariogram functions along 
each radial line for each well, the polygon method should 
be more sensitive to spatial anisotropy. In Kriging, 
assuming a general anisotropy would be difficult in a 
sparse network.

This process has been applied to define CPs for 
the wells in the study area. Distances (h) from a well in 
opposite directions along the same line are the same 
length because they use the same semivariogram func­ 
tion. The analysis is made for all data in the specified 
analysis period and for the wet and dry seasons.

Pairs of wells with each CP overlapping the 
other well location can be considered "effectively 
redundant." This indicates that the water levels in each 
well can be used to predict the water level at the loca­ 
tion of the other well within the specified criteria. This 
does not necessarily indicate that removal of either one 
of a pair of redundant wells will yield the same amount 
of field information. Even when wells have CPs that 
overlap well locations, there would remain some areas 
covered by only one CP for the well.

Temporal Method

In regional time-varying statistics, an analogy 
exists between the analytical methods used in the spa­ 
tial and temporal domains. When concerned with the 
spacing between measurement points, the parameters 
used in Kriging define the corresponding spatial varia­ 
tions. Instead of defining the spatial variations, the tem­ 
poral variations are defined, and these parameters can 
be used to define the required time intervals between 
measurements. The time period between measure­ 
ments at one location can be the temporal equivalent to 
the spacing between measurement points.

The temporal analysis is simpler than the spatial 
analysis in several aspects. Only operating in one 
dimension (time), anisotropy is not a factor as it is in 
the spatial domain with two or three dimensions. Thus, 
a single temporal function can be defined for each mea­ 
surement point. Also, by making measurements at reg­ 
ular time intervals, developing a uniform data set for 
analysis is less costly and less labor intensive in most 
field conditions than setting up measurement locations 
in a uniform spatial grid.

The effect of temporal measurement intervals is 
as important as spatial measurement location optimiza­ 
tion. Even with a spatial measurement network that is 
determined to predict with a certain accuracy, no accu­ 
racy can be attained if the temporal measurement inter­ 
val is too long. A given spatial network can only be 
used to predict accurately with a determined temporal 
measurement interval. The spatial and temporal accu­ 
racies are very dependent on each other.

The optimum measurement periods for each 
well are defined in terms of an autovariogram function. 
The autovariogram for each well is calculated accord­ 
ing to equation 13 for varying lag times i. Because the 
STATIT package calculates the autocovariance QX!X+I 
and autocorrelation pT, these functions are used to 
determine the autovariogram by:

]_
^

(19)

Combining equations 13 and 14 yields equation 19. A 
plot of the autovariogram T against time lag I yields 
the value of time lag beyond which the autovariogram 
rises above the specified criteria. This time lag corre­ 
sponds to the optimum measurement period.

The specified criteria for the minimum allow­ 
able autovariogram value should relate to the accuracy.
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The variogram values for the spatial analysis can be 
used from equation 17 or 18 as the autovariogram cri­ 
teria. The same accuracy for spatial prediction is also 
applicable when determining measurement periods.

For the period of record of each well, the autova­ 
riogram as a function of time lag is determined by 
equation 19. Because the field data are at 1-day inter­ 
vals, the time lag must be defined in 1-day increments. 
Values for the autovariogram are linearly interpolated 
between daily values. The value of time lag when the 
autovariogram first exceeds the criteria is noted as the 
maximum interval between measurements. The analy­ 
sis is made for the same uncertainty criteria used in the 
spatial analysis.

Evaluation Criteria

The spatial and temporal analyses yield informa­ 
tion which can be applied to a ranking system evalua­ 
tion criterion to determine the relative importance of 
each well in the ground-water level network. A type of 
ranking system, DRASTIC (Aller and others, 1985), 
has been used to evaluate the ground-water pollution 
potential of a region. The approach used in DRASTIC 
to develop a ranking system has been applied to the 
problem of ground-water level network design. DRAS­ 
TIC considers these factors: D (depth to water), R (net 
recharge), A (aquifer media), S (soil media), T (topog­ 
raphy), I (impact of the vadose zone), and C (conduc­ 
tivity of the aquifer). Each factor is rated from 1 to 10, 
which is then weighted according to importance. The 
sum of the weighted ratings is the DRASTIC parame­ 
ter. This method can be used to determine the pollution 
potential of any hydrogeologic setting. Details of the 
rating method are described by Aller and others (1985). 
The technique has been applied to the southern Florida 
area (Herr, 1990). A similar method using more com­ 
plex alphanumeric codes has been used to evaluate the 
potential of ground-water contamination from waste 
disposal sites (LeGrand, 1983).

A similar technique was developed in this study 
for ranking the importance of each well in a ground- 
water level network. Called Spatial and Temporal Ade­ 
quacy and Redundancy Evaluation (STARE), the rele­ 
vant data are CP area, effective redundancy, and 
temporal confidence intervals. The first two parameters 
result from the spatial analysis, and the third parameter 
results from the temporal analysis. The CP area depicts

the effective area monitored by the well, the effective 
redundancy depicts the tendency to monitor an area 
.covered by another well, and the temporal confidence 
interval depicts the necessary frequency of measure­ 
ments at the well or the rate of the temporal fluctuation 
at the well.

The STARE approach normalizes the three 
parameters and calculates a weighted sum to depict the 
relative importance of each well to the network. In the 
DRASTIC scheme, some of the parameters are nonnu- 
meric (soil type, aquifer type, and impact of vadose 
zone), so a 1 to 10 scale rating for each parameter is 
used. However, in the STARE scheme, each parameter 
is numeric. Normalizing the parameters is a simple and 
logical approach. The determination of what is "good" 
or "bad" in each parameter is another important consid­ 
eration which must be defined so that the weighted sum 
of the parameters is a logical representation.

The normalizing and weighting schemes that 
have been selected for STARE are not the only vari­ 
ables that affect the final results. The criteria selected 
when determining the CPs, redundancies, and temporal 
confidence intervals (with allowable errors e and per­ 
cent confidence P) greatly affect the results. If the cri­ 
teria were made strict enough, there would probably be 
no redundant wells, and the redundancy would have no 
effect on the STARE results. The most important crite­ 
ria indicate some redundancies in the network but do 
not involve a large number of the wells. This should 
correspond to some significant accuracy desired in the 
network. The selection of the criteria has a degree of 
inherent subjectivity.

The first parameter, CP area, is logically normal­ 
ized in relation to the total area covered by the network. 
Thus, each CP is expressed as a fraction of the network 
area that each well covers: a number between 0 and 1. 
The proportionality between the CPs of different wells 
should not drastically change when the accuracy crite­ 
ria or the season considered for the analysis are 
changed, so data from one analysis are considered rep­ 
resentative.

The second parameter is the redundancy. The 
redundancy value is the number of times a well is part 
of a redundant pair is dimensionless, so it can be con­ 
sidered to be normalized against a single redundancy. 
It is logical to include several analyses with differing 
accuracy criteria and season considered in the develop­ 
ment of this parameter because wells might be required
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to have differing accuracy or be used for seasonal anal­ 
yses. The redundancy is a sum of several analyses and 
would increase nonlinearly relative to well proximity 
(a well redundant in one analysis is likely to be redun­ 
dant in another analysis). Thus, it severely penalizes 
the most redundant wells. The redundancy value can 
vary from 0 to (number of analyses) X (number of 
wells - 1).

A more serious consideration is the simplest 
one; that is, determining which well is more valuable- 
a well with a large CP or a well with a small CP. The 
large CP seems to be the obvious choice, retaining the 
wells that represent the most area. However, the wells 
with smaller CPs should be considered because of the 
uniqueness of the data collected there. A small CP indi­ 
cates that data at a well cannot be predicted by data col­ 
lected elsewhere. A rationale to resolve this conflict is 
to consider that the second parameter, redundancy, is a 
representation of the tendency to mimic other wells. A 
well with a large CP that is not redundant is obviously 
valuable. If the CP is large and the well is highly redun­ 
dant, the redundancy parameter can serve to penalize 
the well. If the CP is small and redundant, the well 
should be penalized more than a well with a large CP 
and the same redundancy. Therefore, it is logical to 
give more value to larger CPs and use the redundancy 
as a counterweight.

The third parameter, temporal confidence inter­ 
val, is the most difficult to normalize. The only repre­ 
sentative timescale for the system is the existing 
measurement interval (in this example, 1 day). When 
dividing by this number, values tend to be greater than 
one with no theoretical upper limit (other than the 
period of record). This must be considered when 
weighting this parameter.

The weighting scheme for the three normalized 
parameters in the STARE scheme is based on three fac­ 
tors: (1) the adequacy of the spatial coverage of the 
well network, (2) the redundancy of wells in the net­ 
work, and (3) optimal well measurement intervals for 
the wells in the network. The three normalized STARE 
parameters (CP area, redundancy, and temporal confi­ 
dence interval) address each factor, respectively. Thus, 
an equal weighting is indicated. The normalized CP 
area is a fraction less than or equal to one, whereas the 
redundancy and temporal confidence interval are often 
greater than one. This justifies expressing the CP area 
as a percentage (multiplying by 100).

The normalized and weighted scheme resulting 
from these criteria is:

STARE coefficient 
_ confidence polygon area _

total area covered by network (20)

- redundancy -
temporal confidence interval 

sampling interval

For a set of wells in a network, the lowest STARE 
coefficient can be subtracted from all the STARE val­ 
ues for convenience. This adjusted STARE coefficient 
has a lowest value of zero and has the same propor­ 
tionality as the unadjusted STARE coefficient.

If a well is identified as the least important to the 
network (lowest STARE coefficient) and is removed, 
the analysis must be repeated for the remaining wells to 
obtain a new STARE coefficient ranking for the net­ 
work. The individual CP areas, total area covered by 
the network, and the redundancy change, but the tem­ 
poral confidence intervals for the remaining wells are 
the same.

SPATIAL ANALYSIS

Basic water-level statistics for the wells in the 
study area indicate the size and variability of the 
data. These statistics are given in table 2. The mean 
levels and variances greatly vary between wells, which 
is mainly due to regional effects of well fields, 
canals, and coastal water levels. Appendix 2 lists 
the FORTRAN programs and Unix scripts used to 
apply the following procedure. The correlation coeffi­ 
cients were determined and variogram analyses were 
performed for four periods, using the:

  Period of record (October 1, 1973-January 1, .1991) 
with e = 0.5 ft, P = 90 percent,

  Period of record (October 1, 1973-January 1, 1991) 
with E = 0.3 ft, P = 90 percent,

  Wet seasons only (May 1-October 31) with e = 0.3 ft, 
P = 90 percent, and

  Dry seasons only (November 1-April 30) with E = 0.3 
ft, P = 90 percent.

The results were used to determine the statistical dis­ 
tribution with which to represent the data and the rep­ 
resentative semi variogram function.
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Table 2. Water levels and statistics for wells in the Broward County ground-water level monitoring network

Well No.

F-291

G-561

G-616

G-617

G-820A

G-853

G-1213

G-1215

G-1220

G-1221

G-1222

G-1223

G-1224

G-1225

G-1226

G-1260

G-1262

G-1315

G-1316

G-1322

G-1472

G-1473

G-1636

G-2030

G-2031

G-2032

G-2033

G-2034

G-2035

G-2147

G-2376

G-2395

G-2443

G-2444

G-2495

S-329

Days of data

6,302

6,302

5,461

6,302

4,046

6,247

6,302

6,302

6,302

4,878

6,122

6,302

6,301

6,135

6,302

6,302

5,771

6,302

4,701

5,855

6,210

6,302

6,302

5,780

6,667

6,302

6,190

6,302

6,301

5,937

2,387

2,292

1,462

1,462

667

6,295

Water levels, in feet above and below (-) sea level

Minimum

0.24

.39

5.38

2.51

-3.04

-6.62

9.39

-2.20

.43

.75

1.59

1.43

-.22

.91

.30

-.71

-11.19

6.26

6.69

2.05

.23

.27

1.79

6.09

4.75

2.85

5.21

1.49

.22

-1.02

3.95

-13.76

4.45

.46

2.48

-1.26

Mean

1.56

1.62

8.61

3.80

3.16

.06

12.31

2.67

1.81

1.94

3.70

2.46

1.64

2.40

1.53

2.88

-5.37

10.00

8.52

3.26

1.60

1.50

2.99

8.19

7.29

4.36

6.60

3.66

1.51

1.90

6.09

-7.21

5.94

2.33

3.65

1.27

Maximum

5.52

4.52

13.41

6.85

7.69

5.51

14.99

8.50

6.37

6.52

6.59

6.39

5.14

6.54

8.97

7.59

3.05

13.66

12.78

5.84

5.33

5.37

5.01

10.99

10.96

7.25

10.01

6.19

5.52

6.53

7.23

-.82

8.35

5.02

5.32

5.13

Variance (feet 
squared)

0.44

.38

2.06

.33

3.71

3.54

1.04

4.84

.45

.32

.59

.33

.48

.60

.43

2.57

10.16

1.55

.77

.21

.53

.42

.27

.69

.30

.46

.31

.50

.38

1.63

.47

5.80

.45

1.01

.39

1.08

Standard 
deviation (feet)

0.66

.62

1.43

.57

1.93

1.88

1.02

2.20

.67

.56

.77

.57

.69

.77

.65

1.60

3.19

1.25

.88

.46

.73

.65

.52

.83

.55

.68

.56

.71

.61

1.28

.69

2.41

.67

1.01

.62

1.04
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Period of Record Analysis

The number of daily data points for concurrent 
days between wells using the period of record, October 
1, 1973 to January 1,1991 (not counting those with no 
concurrent data), ranges from 266 days for well pair 
G-2495/G-1262 to 6,302 days for wells F-291, G-561, 
G-617, G-1213, G-1215, G-1220, G-1223, G-1226, 
G-260, G-1315, G-1473, G-1636, G-2031, G-2032, 
and G-2034. Well G-2495 has no concurrent data with 
wells G-1322 and G-2030 (table 1). Therefore, correla­ 
tions or variograms could not be calculated for well 
pairs G-2495/G-1322 and G-2495/G-2030.

The correlation coefficients were determined for 
well pairs containing concurrent data. Values ranged 
from 0.019 for well pair G-561/G1262 to 0.980 for well 
pair F-291/G-1473. The t-test according to equation 5 
was performed, and the two-tailed probability (proba­ 
bility that the correlation coefficient is not significant) 
was obtained from the Student distribution. Well pairs 
G-561/G-1262 and G-2032/G-1262 failed to meet the 
90 percent confidence limits with a two-tailed proba­ 
bility of 0.147 and 0.109, respectively, and were not 
used in the variogram analysis. The majority of well 
pairs had a two-tailed probability of 0.000, indicating 
that the correlations were highly significant.

The Shapiro-Wilk test indicated little difference 
in fitting the differences in residuals to a normal or a 
log-normal distribution. The best fit to a normal distri­ 
bution and a log-normal distribution had an R-squared 
value of 0.998 for well pair G-2032/S-329. The worse 
fits were 0.589 for normal data and 0.591 for log-nor­ 
mal data for well pair G- 1226/G-2035. The normal and 
log-normal R-squared values had the same mean, 
within 0.961. The normal distribution was selected to 
use for predictions because of the close results between 
the normal and log-normal distributions and the lack of 
sensitivity of the scheme to the exact distribution.

To obtain an initial estimate for the best semivar- 
iogram function to use in this area, the semivariograms 
as a function of distance were calculated for each well 
related to all other wells. The resulting scatter plots are 
shown in figure 5. These plots cannot be used to "best 
fit" semivariogram functions for two reasons. First, the 
values of the semivariograms in the plots are much 
higher than those of concern, so any fit to these values 
would not be reliable at the small semivariogram val­ 
ues of interest. Second, the semivariogram values on 
any one plot occur for wells at differing directions, so

fitting to the points would ignore anisotropy. The plots 
can be used as a rough guide to the general shape of the 
semivariogram functions. None of the plots seem to 
have the flat low end of the curve with increasing slope 
that the Gaussian function has in figure 3. Wells G-616, 
G-853, G-1215, G-1260, and G-2395 indicate the steep 
low-end slope of the spherical and exponential equa­ 
tions in figure 3. The spherical and exponential equa­ 
tions seem to better express the variogram functions in 
this area than the Gaussian equation. However, all three 
equations were used for comparison.

The semivariogram values 'fy-were calculated for 
each well pair from the variance and covariance data. 
Based on the semivariogram achieving this value at the 
distance between the wells, values for the coefficient a 
in equations 10,11, and 12 were calculated. A different 
value of a is used then for each radial line to another 
well.

The desired accuracy in predicted head differ­ 
ence e must be selected as a realistic value. The pre­ 
dicted head difference does not have to be as accurate 
as the well measurements because e indicates a confi­ 
dence in estimation for a region. Ground-water level 
contour maps of Broward County (Lietz, 1992) were 
drawn with 1.0-ft contours for most of the county. To 
predict values from such a map, an accuracy of e = 0.5 
ft with a reasonable strict confidence limit was needed. 
Standard statistics indicate that for a 90 percent confi­ 
dence limit for normally distributed data, the value of 
the standard normal variate Z = 1.6448. Using these 
values e of Z in equation 17, it is indicated that head 
prediction within 0.5 ft with 90 percent confidence can 
occur at a distance in which the variogram *F is 0.0924 
ft2 or the semivariogram % is 0.0462 ft2.

The radial distance along each line to the bound­ 
ary of the CP is calculated according to the spherical, 
exponential, and Gaussian semivariogram equations. 
Expressing the radial distances as a percent of the total 
distance between each well pair, the average differ­ 
ences in radial distances showed the exponential equa­ 
tion produced results that were 2.4 percent lower than 
the spherical equation case, and the Gaussian case pro­ 
duced results that were 14.2 percent higher than the 
spherical equation. The close results of the exponential 
and spherical equations are significant, considering 
that examination of figure 5 and comparison with the 
functions in figure 3 indicate that the exponential and 
spherical equations are better representations of this 
system than the Gaussian equation. Between the
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Figure 5. Calculated semivariograms for wells in the Broward County ground-water level monitoring network. 
Well locations shown in figure 2.
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exponential and spherical equations, the spherical 
equation was selected to represent the extent of the CPs 
because its results are between those of the exponential 
and Gaussian equations, yet close to the exponential 
equation.

The radial distances were calculated to the 
points where y^ is 0.0462 ft2 using the spherical semi- 
variogram equation. The resulting CPs are shown in 
figure 6. The CPs indicate the areas in which each 
respective well can be used to predict the ground-water 
level within 0.5 ft at 90 percent confidence. Using 
equation 17 with the standard normal variate (Z) tables 
is equivalent to predicting levels within 0.3 ft at 67.6 
percent confidence or within 0.1 ft at 25.8 percent con­ 
fidence.

The individual CPs in figure 6 can be discerned 
more easily in northern Broward County than in south­ 
ern Broward. In southeastern Broward County, the CPs 
are so large and clustered that it is difficult to identify 
the CP for a particular well. (The CP of a particular 
well should be displayed alone.) The large CPs indicate 
high correlation with other wells, which is due to the 
relatively flat, steady water table in southeastern Bro­ 
ward County. The analysis indicates that water levels 
can be predicted within the criteria specified for the 
existing wells virtually everywhere in this area. How­ 
ever, there are two anomalies: the CP of well F-291 that 
points to the southwest (fig. 6, "a") and the CP of well 
G-1473 that points to the northeast (fig. 6, "b"). These 
anomalies result from the high correlation between 
wells F-291 and G-1473, and not much confidence can 
be placed in the vicinity of these two wells (see limita­ 
tion no. 3 in the "Spatial Method" section).

The wells with the smallest CPs are in northeast­ 
ern Broward County (fig. 6). This area is subject to 
steeper ground-water level gradients (Lietz, 1992). The 
analysis indicates that each of these wells can only be 
used to estimate water levels in a small area in close 
vicinity to the well. Many more wells would be needed 
in this area to obtain representative regional coverage.

Ground-water levels in southeastern Broward 
County are well monitored, but there is missing areal 
coverage between the CPs of wells in other parts of the 
county. There are large gaps between the CPs of wells 
G-2032, G-2033, G-1262, G-2395, S-329, and G-1221 
in central Broward County and between the CPs of well 
G-2376 and adjacent wells in west-central Broward 
County (fig. 6).

The sharp projections on the CPs (fig. 6) result 
from high correlation between relatively distant wells 
(see limitation no. 2 in the "Spatial Method" section). 
The appearance of the projection as a spike indicates 
that adjacent wells have a much lower radius of the CP.

The removal of distant correlations creates a 
more realistic representation of the CPs as shown in 
figure 7. The individual CPs are somewhat discernible, 
but the southeastern coast is still dense. Although this 
method smooths the CP boundaries, the selection of 
which projections should be removed is arbitrary. The 
predicted areal coverage of the CPs does not change 
appreciably.

To illustrate the effect of making the criteria 
more strict, the variogram analysis was implemented 
with a criterion of water-level prediction within 0.3 ft 
at 90 percent confidence (y^ = 0.0166 ft2). This can be 
viewed as either tightening the water-level requirement 
by 0.2 ft or tightening the confidence limit by 9.4 per­ 
cent (determined by Z and normal table). The results 
are shown in figure 8. A significant reduction in size of 
the CPs is observed (figs. 6 and 8), which is expected 
because the proportionality between the CP radius and 
water-level criteria is not linear (eqs. 10 and 16). With 
this criterion of 0.3 ft, relatively few of the CPs overlap, 
and each well monitors a small area. The individual 
CPs are clearer in figure 8 than in figures 6 and 7. The 
CP of a well is generally the same shape when the cri­ 
teria are changed, only smaller.

Wet-Season Analysis

The correlation coefficients and variogram anal­ 
yses were conducted using the data for the wet season, 
defined as the period from May through October. The 
number of concurrent days for the wet-season analysis 
ranged from 154 days for well pair G-2395/G-2495 to 
3,159 days for wells F-291, G-561, G-617, G-1213, 
G-1215, G-1220, G-1223, G-1224, G-1226, G-1260, 
G-1315, G-1473, G-1636, G-2031, G-2032, G-2034, 
and S-329. For this analysis (as was the case for the 
period of record analysis), well pairs G-1322/G-2495 
and G-2030/G-2495 had no concurrent data and could 
not be used for the correlation or variogram analyses.

The correlation coefficients for the wet season 
ranged from 0.006 at well pair G-1262/G-2032 to 0.980 
at well pair F-291/G-1473. Nine well pairs showed no 
significant correlation within a confidence limit of 90
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percent. The two-tailed probabilities for these well 
pairs are: 0.205 at G-820A/G-1636, 0.103 at G-853/ 
G-1262, 0.356 at G-1215/G-1262, 0.155 at G-1225/ 
G-1262, 0.171 at G-1262/G-2031, 0.749 at G-1262/ 
G-2032, 0.739 at G-1262/G-2033, 0.607 at G-1315/ 
G-1322 and 0.5 32 at G-1316/G-2147. These well pairs 
were not used for the variogram analysis.

The CPs for the wet-season analysis using the 
0.3-ft criterion at 90 percent confidence are shown in 
figure 9. Most of the CPs for the wet season are smaller 
than those for the period of record (figs. 8 and 9). This 
result is expected, considering that during the wet sea­ 
son water-level fluctuations are smaller due to rainfall 
recharge.

Dry-Season Analysis

The correlation coefficients and variogram anal­ 
yses were performed using the data for the dry season, 
defined as the period from November through April. 
The number of concurrent days for the dry-season anal­ 
ysis ranged from 82 days for well pair G-1262/G-2495 
to 3,143 days for wells F-291, G-561, G-617, G-853, 
G-1213, G-1215, G-1220, G-1223, G-1224, G-1226, 
G-1260, G-1315, G-1473, G-1636, G-2031, G-2032, 
G-2034, G-2035 and S-329. Well pairs G-1322/G-2495 
and G-2030/G-2495 had no concurrent data for the dry 
seasons and could not be used for the correlation or var­ 
iogram analyses.

The correlation coefficients for the dry season 
ranged from 0.008 at well pair G-561/G-1262 to 0.971 
at well pair F-291/G-1473. There were 10 well pairs 
with no significant correlation with a confidence limit 
of 90 percent. The two-tailed probabilities for these 
well pairs are: 0.664 at G-561/G-1262,0.156 at G-617/ 
G-1262, 0.452 at G-1221/G-2495, 0.182 at G-1222/ 
G-1316, 0.304 at G-1223/G-2495, 0.315 at G-1262/ 
G-1472, 0.199 at G-1262/G-2147, 0.718 at G-1636/ 
G-2495, 0.917 at G-2376/G-2495, and 0.277 at 
G-2395/G-2495. These well pairs were not used for the 
variogram analysis.

The CPs for the dry-season analysis using the 
0.3-ft criterion at 90 percent confidence are shown in 
figure 10. CPs are larger for the dry season than for the 
period of record (figs. 8 and 10), which corresponds to 
the smaller spatial variability of this lower recharge 
period. The long projections in the CP boundaries of 
wells G-1316 and G-2495 oriented toward each other 
are pronounced in the dry season.

Well Utility and Redundancy

One method of ranking the utility of each well is 
by the area of each CP. This is based on the concept that 
wells with a larger CP can be used to monitor a larger 
area. The wells are ranked in order of decreasing CP 
area for the 0.5-ft criterion at 90 percent confidence in 
table 3, but site-specific interests are not considered in 
this ranking. However, a well that only monitors a 
small CP area does so because its fluctuations are 
higher. Therefore, the wells with the smaller CPs can 
be considered as important because they are monitor­ 
ing a highly variable situation. The debate is addressed 
in the "Evaluation Criteria" section.

The effectively redundant well pairs at 90 per­ 
cent confidence for the 0.5-ft and 0.3-ft analyses are 
determined by the overlapping of polygons with well 
locations. Figure 11 illustrates the difference when 
tightening the water-level fluctuation criteria. Using 
the 0.5-ft criterion at 90 percent confidence, there are 
12 redundant well pairs, including F-291/G-561, 
F-291/G-1226, F-291/G-1472, F-291/G-1473, F-291/ 
G-2035, G-561/G-1220, G-1226/G-1473, G-1226/ 
G-2035, G-1472/G-1473, G-1472/G-2035, G-1473/ 
G-2035, and G-2034/G-2495. The southeastern comer 
of the study area contains the greatest well redundancy 
(fig. ID.

Analysis of redundant pairs for the 0.3-ft crite­ 
rion at 90 percent confidence for the entire year, wet 
season only, and dry season only data demonstrates the 
seasonal difference in redundancy (fig. 12). Well pairs 
F-291/G-1472 and F-291/G-1473 are redundant with 
the 0.3-ft criterion at 90 percent confidence as shown in 
figures 11 and 12. Although well F-291 is effectively 
redundant with wells G-1472 and G-1473, these two 
wells are not effectively redundant with each other. 
This is probably because the ground-water level con­ 
tours in this area are roughly oriented north to south 
(Lietz, 1992). Thus, well pairs F-291/G-1472 and 
F-291/G-1473 are closer to being on the same contour 
line than well pair G-1472/G-1473.

Only well pair F-291/G-1473 is effectively 
redundant in the wet-season analysis (fig. 12). The 
redundancy is much lower than in other situations due 
to the high variability of the water levels in the wet sea­ 
son.

The eight well pairs redundant in the dry-season 
analysis only include: F-291/G-1226, F-291/G-1472, 
F-291/G-1473,F-291/G-2035,G-617/G-2495,G-1226/ 
G-1473, G-1226/G-2035, and G-2034/G-2495. This is
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Table 3. Wells ranked in order of decreasing confidence polygon area using all data, 0.5-foot criterion at 90 percent confidence 
limit

Well number

F-291

G-2035

G-1223

G-1221

G-1220

G-2443

G-2495

G-561

G-1226

G-1473

G-2032

G-2033

G-617

G-1225

G-1636

G-2034

G-1224

G-2031

Confidence 
polygon area 

(square miles)

27.17

25.08

21.56

21.42

20.50

18.73

18.65

16.78

16.53

14.50

13.88

13.54

13.15

11.74

9.83

8.28

8.11

7.78

Well number

G-1322

G-2376

G-1472

G-1222

G-2030

G-2444

S-329

G-1316

G-1213

G-616

G-2147

G-1315

G-1260

G-820A

G-853

G-1215

G-2395

G-1262

Confidence 
polygon area 

(square miles)

7.74

7.69

7.34

6.75

6.19

4.49

4.17

2.27

1.59

.95

.66

.64

.36

.22

.15

.11

.08

.03

the largest number of redundant wells for the 0.3-ft cri­ 
terion at 90 percent confidence (fig. 12). The lower vari- 
abilityofthewaterlevelsduringthedryseasonisthecause 
of this large number of redundant wells.

Using the 0.3-ft criterion at 90 percent confi­ 
dence, the following analysis is indicated. Well pair 
F-291/G-1473 duplicates each other within the crite­ 
ria at all times. Well pair F-291/G-1472 duplicates 
within the criteria for yearly analyses but does not 
duplicate within the criteria for studies of the wet sea­ 
son only. Well pairs F-291/G-1226, F-291/G-2035, 
G-617/G-2495, G-1226/G-1473, G-1226/G-2035, and 
G-2034/G-2495 can be considered to represent each 
other within criteria for the dry season only.

The sum of the redundancy data for the four 
analyses (0.5-ft criterion, 0.3-ft criterion, wet season, 
and dry season) indicates that the wells can be ranked 
in terms of the number of times each well is indicated 
as part of a redundant pair (table 4). The wells in the

southeastern part of the study area have the greatest 
redundancy. This ranking does not give consideration 
to site-specific interests, total CP areas, or existing gaps 
in the network.

Table 4. Ranking of well redundancy using four analyses 
(0.3-foot criterion, 0.5-foot criterion, wet season, and dry 
season)

Well number
Number of times well is 
part of a redundant pair

F-291
G-1473
G-2035
G-1226
G-1472
G-2495
G-561
G-2034
G-617
G-1220
All other wells

12
8
6
6
5
3
2
2
1
1
0
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Figure 11. Pairs of redundant wells at 90 percent confidence limit using all data (0.5-foot and 0.3-foot criteria).
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Figure 12. Pairs of redundant wells with 0.3-foot criterion at 90 percent confidence limit using all data, wet- 
season data only, and dry-season data only.
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Data Verification

The potential sources of errors and estimations 
in the method are apparent because of the potential dis­ 
advantages discussed in the "Spatial Method" section. 
Therefore, data from a well not used in the develop­ 
ment of the CPs are used for comparison with adjacent 
wells. If a CP of an adjacent well overlaps the new well, 
the data from the adjacent well should be able to be 
used to estimate the new well values within the given 
criteria.

There are many wells in Broward County that do 
not have continuous recorders, so only periodic 
water-level data are available from them (Haire and 
Lietz, 1991). The water-level data for any well can be 
expressed as perturbations about the mean by subtract­ 
ing the mean of the data from each data value. These 
perturbations can be compared to the simultaneous per­ 
turbations of any other well to determine the percent­ 
age of time that they do not differ more than the given 
criteria. This result can be compared with the predicted 
accuracies from the CP analysis.

A reasonably large data set is needed to define 
perturbations about a mean. Well G-2409 (fig. 13), 
which has no continuous recorder, has one of the larg­ 
est set of water-level values (110) between September 
16, 1985, and September 25, 1992. There are signifi­ 
cant differences between the data collected from well 
G-2409 and the continuous recorder wells used to cal­ 
culate the CPs. The water levels recorded for well 
G-2409 are instantaneous at the time of measurement. 
The continuous recorder well values are daily maxi- 
mums. If a rainfall event occurs after recording the 
water level at well G-2409 during the same day, the 
daily maximum might be significantly different than 
the value measured. Also, the limited number of data 
points at well G-2409 allows more error in a statistical 
analysis. Despite these limitations, well G-2409 pre­ 
sents an adequate set of noncontinuous recorder well 
data for verifying the CPs.

The CPs of the eight wells near well G-2409 are 
shown in figures 13 and 14. Well G-2409 with the 0.5- 
ft criterion at 90 percent confidence is within the CPs 
of wells F-291, G-1226, G-1472, G-1473, and G-2035 
(fig. 13). Well G-2409 with the 0.3-ft criterion at 90 
percent confidence is within the CPs of wells F-291, 
G-1472, and G-1743 (fig. 14). If the CPs are accurate, 
the data from these wells could be used to predict the 
perturbations at well G-2409 within these criteria.

The water-level perturbations from the mean at 
well G-2409 were compared to those at the continuous 
recorder wells. The number of data points collected in 
which the perturbations at each continuous recorder 
well were within the 0.3- or 0.5-ft criteria of the pertur­ 
bations at well G-2409 were calculated as a percentage 
of the total number of data points. This calculation was 
used to indicate the percentage of data collected at each 
of the wells that can be used to predict the water levels 
at well G-2409 within 0.5 ft as shown in figure 15. On 
the basis of the previously mentioned CPs, the amount 
of data at well G-2409 predicted by wells F-291, 
G-1226, G-1472, G-1473, and G-2035 was greater than 
90 percent, indicating that the CPs are defined prop­ 
erly. However, the data at wells G-1224 and G-1225 
can also be used to predict greater than 90 percent of 
the data at well G-2409 (95.3 percent and 90.7 percent, 
respectively) when the CPs do not make this indication. 
Both wells have CPs close to, but not overlapping, well 
G-2409, indicating that the CPs might be underesti­ 
mated in some cases (fig. 13).

The percentage of data collected at each of the 
wells can be used to predict the water levels at well 
G-2409 within 0.3 ft (fig. 16). The CPs at wells F-291, 
G-1472, and G-1473 (fig. 14) indicate that the pre­ 
dicted level should be greater than 90 percent at these 
wells as shown in figure 16. The CPs also indicate that 
data from no other wells should be used to predict 
water levels at well G-2409 within 0.3 ft greater than 90 
percent of the time as shown in figure 16. No errors 
were detected in the CP value for these criteria.

TEMPORAL ANALYSIS

The calculated autovariograms for each well for 
the period of record are used for temporal analysis (fig. 
17). The entire period of record was used for each of 
the calculations. The approach to temporal analysis 
was to calculate the functions with a maximum lag time 
T of JN+W where N is the number of days of data. 
When the maximum lag exceeds this fraction of the 
total data points, the functions become unreliable 
because of insufficient randomization. Thus, wells with 
short periods of record have short autovariogram func­ 
tions. However, maximum time lags for all wells are 
high enough to calculate temporal confidence intervals.

The variogram criterion (yrf) for 0.5-ft accuracy 
at 90 percent confidence was previously calculated by
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Figure 13. Location of well G-2409 and confidence polygons of nearby wells for 0.5-foot criterion, 90 percent 
confidence limit.
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Figure 13. Location of well G-2409 and confidence polygons of nearby wells for 0.5-foot criterion, 90 percent 
confidence limit-Continued.
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Figure 14. Location of well G-2409 and confidence polygons of nearby wells for 0.3-foot criterion, 90 percent 
confidence limit.
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Figure 16. Percentage of data at well G-2409 predicted within 0.3 foot by data at each well.

36 Spatial and Temporal Statistical Analysis of a Ground-Water Level Network, Broward County, Florida



8 4.0

I 3 -5 
£3.0
S 25

a 2.0
1 1-5

F-291

0 5 10 15 20 25 30 35 40 45 50 
TIME LAG, IN DAYS

Q4.0 

| 3.5 

£3.0 

£2-5

a 2.0 
i i-5

£ 0.5

G-561

"0 5 10 15 20 25 30 35 40 45 50 
TIME LAG, IN DAYS

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5

G-616

"0 5 10 15 20 25 30 35 40 45 50 
TIME LAG, IN DAYS

O 4.0 

? 3.5 

| 3,

a. 2.0
£ 1-5

I 0.5

1 0

G-617

0 5 10 15 20 25 30 35 40 45 50 
TIME LAG, IN DAYS

G - 820A

"0 5 10 15 20 25 30 35 40 45 50 
TIME LAG, IN DAYS

G-853

TO 15 20 25 30 35 40 45 "50 
TIME LAG, IN DAYS

Q 4.0 

1 3.5 

% 3.Q-

I 2-5 

S 2.0

I 1>5

8 1.0
I 0.5
o 
fc; o

G-1213

0 5 10 15 20 25 30 35 40 45 50 
TIME LAG, IN DAYS

0 5 10 15 20 25 30 35 40 45 50 

TIME LAG, IN DAYS

2? 3.5-
o
K 3.0-
H

3 2.0-

8 i'o-
I 0.5-

G-1220

0 5 10 15 20 25 30 35 40 45 50 
TIME LAG, IN DAYS

G-1221

0 5 10 15 20 25 30 35 40 45 50 

TIME LAG, IN DAYS

G -1222

"0 5 10 15 20 25 30 35 40 45 50
TIME LAG, IN DAYS

Q 4.0

p:
I 2.5 

S 2.0
G-1223

"0 5 10 15 20 25 30 35 40 45 50 
TIME LAG, IN DAYS

Figure 17. Calculated autovariograms for wells in the Broward County ground-water level monitoring 
network. Well locations shown in figure 2.
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Figure 17. Calculated autovariograms for wells in the Broward County ground-water level monitoring 
network-Continued. Well locations shown in figure 2.
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Figure 17. Calculated autovariograms for wells in the Broward County ground-water level monitoring 
network-Continued. Well locations shown in figure 2.
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equation 17 with e = 0.5 ft and Z = 1.6448 to be 0.0924 
ft . The points on each plot in figure 17 where the auto­ 
variogram exceeds this variogram criterion were calcu­ 
lated and are given in table 5. Fractional daily values 
are linearly interpolated between daily values. The 
temporal confidence intervals range from 0.89 day (21 
hours) at well G-2395 to 5.47 days at well G-2376.

Table 5. Temporal confidence intervals for 0.3 and 0.5 feet at 90 
percent confidence limit

Well number

F-291
G-561
G-616
G-617
G-820A
G-853
G-1213
G-1215
G-1220
G-1221
G-1222
G-1223
G-1224
G-1225
G-1226
G-1260
G-1262
G-1315
G-1316
G-1322
G-1472
G-1473
G-1636
G-2030
G-2031
G-2032
G-2033
G-2034
G-2035
G-2147
G-2376
G-2395
G-2443
G-2444
G-2495
S-329

Temporal 
confidence 

interval for 0.3 
foot (days)

1.32
1.29
.54
.72

1.29
.67
.76

1.48
1.33
.71
.38
.77
.85

1.16
.62

1.41
1.63
1.53
.94
.64

1.38
1.36
1.02
.80
.92
.49
.92
.53

1.18
.68

2.02
.32
.62

1.71
.82
.70

Temporal 
confidence 

interval for 0.5 
foot (days)

2.86
2.93
1.36
1.76
2.74
1.87
1.83
3.39
3.29
2.05
1.09
1.91
2.11
2.50
1.79
3.14
3.55
4.39
2.39
1.72
3.00
3.01
2.59
1.88
2.65
1.32
2.49
1.44
2.72
1.83
5.47

.89
1.80
3.91
2.00
1.81

Because the temporal confidence intervals indi­ 
cate a period of time over which water levels can be 
predicted from a single measurement, they correspond 
to maximum time intervals for an optimal measure­ 
ment scheme. These temporal confidence intervals are 
short compared with any reasonable manual measure­ 
ment protocol, and for most wells, water levels change 
so much within several days that predictions cannot be 
made with accuracy (table 5).

Well G-2395 has the only temporal confidence 
interval less than 1 day for 0.5 ft. This indicates that for 
the first lag point (1 day), the autovariogram in figure 
17 was greater than the criterion (0.0924 ft2). Because 
the field data are in the daily format, the existing data 
are insufficient to predict values at the well during the 
day with the desired accuracy. However, the raw field 
data are collected hourly.

The time lags at which the autovariograms 
exceed the criterion for 0.3-ft accuracy at 90 percent 
confidence were calculated and are given as temporal 
confidence intervals in table 5. As expected, the inter­ 
vals are short, many less than 1 day.

NETWORK STATISTICS

The STARE coefficient development described 
in a previous section is applied to the network data 
(tables 3-5), and the results are reported for each well 
as adjusted STARE coefficients (table 6). The total 
area covered by the network (shaded area in fig. 6) is 
calculated by CIS to be 208.13 mi2. The CP areas are 
normalized by this number. The temporal confidence 
intervals are normalized by the measurement interval 
of 1 day. The adjusted STARE coefficients and the well 
locations are shown in figure 18.

Well G-1472 is ranked as the least important 
well to the network with an adjusted STARE coeffi­ 
cient of 0.00 (table 6), which is primarily because of its 
redundancy. Well G-1223 is ranked as the most impor­ 
tant well, with an adjusted STARE coefficient of 12.92 
(table 6). This well has a relatively large CP area, no 
redundancy, and an average temporal confidence inter­ 
val.

The STARE coefficient only indicates the sig­ 
nificance of each well with respect to the entire net­ 
work. No site-specific concerns are considered, and 
"holes" in the network are not specifically addressed by 
the STARE coefficients but rather by the map of CP
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Figure 18. Adjusted Spatial and Temporal Adequacy and Redundancy Evaluation (STARE) coefficients for 
each well in the Broward County ground-water level monitoring network.
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Table 6. Development of Spatial and Temporal Adequacy and Redundancy Evaluation (STARE) coefficients

Well number

G-1472
G-1315
G-1473
G-1262
G-1215
G-1260
G-820A
F-291
G-853
G-2376
G-2444
G-2147
G-1316
G-1213
G-616
G-2395
G-1226
S-329
G-2034
G-2031
G-2030
G-1224
G-1322
G-1636
G-1222
G-561
G-1225
G-2035
G-617
G-2495
G-2033
G-2032
G-1220
G-2443
G-1221
G-1223

.«   . ^ . i vveignieci weigntea .
confidence Redundancy2 ,.j , i ' confidence poygon area 1 . . |3 K /a intervar

3.53
.31

6.97
.01
.05
.17
.11

13.05
.07

3.69
2.16

.32
1.09
.76
.46
.04

7.94
2.00
3.98
3.74
2.97
3.90
3.72
4.72
3.24
8.06
5.64

12.05
6.32
8.96
6.51
6.67
9.85
9.00

10.29
10.36

Weighted confidence polygon area =

5
0
8
0
0
0
0

12
0
0
0
0
0
0
0
0
6
0
2
0
0
0
0
0
0
2
0
6
1
3
0
0
1
0
0
0

confidence polygon area
total area covered by network

3.00
4.39
3.01
3.55
3.39
3.14
2.74
2.86
1.87
5.47
3.91
1.83
2.39
1.83
1.36

.89
1.79
1.81
1.44
2.65
1.88
2.11
1.72
2.59
1.09
2.93
2.50
2.72
1.76
2.00
2.49
1.32
3.29
1.80
2.05
1.91

100.

^ ' __ Adjusted STARE
 . . .4 coefficient5 coefficient*

-4.47
-4.08
-4.04
-3.54
-3.34
-2.97
-2.63
-1.81
-1.80
-1.78
-1.75
-1.51
-1.30
-1.07

-.90
-.85
.15
.19
.54

1.09
1.09
1.79
2.00
2.13
2.15
3.13
3.14
3.33
3.56
3.96
4.02
5.35
5.56
7.20
8.24
8.45

0.00
.39
.43
.93

1.13
1.50
1.84
2.66
2.67
2.69
2.72
2.96
3.17
3.40
3.57
3.62
4.62
4.66
5.01
5.56
5.56
6.26
6.47
6.60
6.62
7.60
7.61
7.80
8.03
8.43
8.49
9.82

10.03
11.67
12.71
12.92

Redundancy = total number of times well is part of a redundant pair.

'Weighted temporal confidence intervj

4TTnaHiiistp.<1 STARP rn,».ffir-if>nt =   

temporal confidence interval
sampling interval

confidence polygon area
i   rcdundfi

temporal confidence 
\nr\      -         -        

interval

total area covered by network 

Adjusted STARE coefficient = unadjusted STARE coefficient - lowest unadjusted STARE coefficient.

sampling interval
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areas. This is indicated by the low STARE coefficients 
assigned to wells G-1315, G-1262, G-1215, and 
G-1260 (table 6 and fig. 18). The low ratings for these 
northern wells are primarily due to the small CP areas 
and not due to redundancy (all wells have zero redun­ 
dancy). These wells contribute little to the network 
coverage, but some are the only continuous recording 
wells in this area. Thus, any data are preferable to no 
data, and wells in an area that have small STARE coef­ 
ficients should probably be retained. However, a well 
with a small STARE coefficient in close proximity to 
wells with significantly higher STARE coefficients is a 
prime candidate for removal from the network.

Well G-1472, the least important well to the net­ 
work (table 6), should be the first well considered for 
removal. However, because the CPs of every well 
depends on the correlation with every other well, all 
CPs will be altered by the removal of G-1472. There­ 
fore, it is necessary to analyze the removal of well 
G-1472 and the effect on the network.

The CP areas for 0.5-ft criterion at 90 percent 
confidence were recalculated without well G-1472, and 
the results are shown in figure 19. By comparison with 
figure 6, it is apparent that many wells show little 
change in the CP area, with the most marked changes 
near well G-1472. The new total area covered by the 
network is 205.40 mi2. Thus, there is a 2.73-mi2 reduc­ 
tion in the areal coverage when removing well G-1472. 
The weighted CP areas, divided by 205.40 mi2, and 
expressed as a percent are given in table 7.

Immediately east of well G-1473, more area 
appears to be covered by the network in figure 19 than 
in figure 6. This is because of the CP of well G-2035. 
The removal of well G-1472 increases network cover­ 
age in one area (east of well G-1473) and decreases it 
in other areas (north of well F-291 and south of well 
G-1473). The correlation between wells G-2035 and 
G-1472 indicated a lower CP radius than the correla­ 
tion of well G-2035 with other nearby wells (F-291 and 
G-1473). Therefore, the removal of well G-1472 
caused the CP of well G-1472 to have a somewhat 
larger radius to the eas"t (see caution no. 2 in the "Spa­ 
tial Method" section). However, as previously stated, 
the total areal coverage of the network has been reason­ 
ably reduced by 2.73 mi2.

The recalculation of the CPs is unnecessary for 
the 0.3-ft criterion at 90 percent confidence or the wet- 
and dry-season only situations because the results are

only used to calculate the redundancy. Because redun­ 
dancy occurs only when a CP radii is longer than the dis­ 
tance between wells, the number of times each well is a 
part of a redundant pair can be determined from the pre­ 
vious redundancy data, removing all pairs that contain 
G-1472. Thus, using the 0.5-ft criterion at 90 percent 
confidence, the redundant well pairs are: F-291/G-561, 
F-291/G-1226, F-291/G-1473, F-291/G-2035, G-561/ 
G-1220, G-1226/G-1473, G-1226/G-2035, G-1473/ 
G-2035, and G-2034/G-2495. The well pair that is 
redundant with the 0.3-ft criterion at 90 percent confi­ 
dence is F-291/G-1473. The well pair that is effectively 
redundant in the wet-season analysis only is F-291/ 
G-1473. Well pairs that are redundant in the dry-season 
analysis only are: F-291/G-1226, F-291/G-1473, F-291/ 
G-2035, G-617/G-2495, G-1226/G-1473, G-1226/ 
G-2035, and G-2034/G-2495. The number of times each 
well is part of a redundant pair is given in table 7.

Temporal confidence intervals are unchanged by 
the removal of well G-1472, except for the absence of 
well G-1472 (table 7). The unadjusted and adjusted 
STARE coefficients were recalculated and are given in 
table 7.

Comparison of table 7 with table 6 indicates the 
effects of removing the lowest ranked well on the 
STARE coefficient ranking. Although in table 6, well 
G-1315 follows well G-1472 as the least important 
well, table 7 indicates that the removal of well G-1472 
has made G-1473 the least important well. The redun­ 
dancy of well G-1473 is the major cause for its new 
ranking. Also, when ranking wells for least importance, 
well F-291 is ranked 8th when well G-1472 is included 
in the network (table 6), but 15th when the well is 
removed (table 7). Without the overlapping monitoring 
area from well G-1472, well F-291 becomes more 
important to the network even though it has the highest 
redundancy. A similar occurrence with well G-2035 is 
apparent as the ranking for this well is 27th in table 6 
and 30th in table 7.

At the high STARE coefficient end of the tables, 
the coefficients and ranking change little compared to 
the low end. Well G-1223 is still the most important 
well to the network. The adjusted STARE coefficient 
for this well has only changed from 12.92 in table 6 to 
12.90 in table 7. This analysis indicates that after elim­ 
inating well G-1472, well G-1473 would be the next 
removal. The procedure could be repeated for each 
well.
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Figure 19. Confidence polygons for 0.5-foot criterion at 90 percent confidence limit with well G-1472 removed 
from the network.
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Table 7. Recalculation of Spatial and Temporal Adequacy and Redundancy Evaluation (STARE) coefficients after removal of 
well G-1472

Weighted Weighted
Well number confidence Redundancy2 m/\ . -\ J confidence polygon area 1 . , |3 M ' a interval

G-1473 5.80
G-1315 .31
G-1262 .01
G-1215 .05
G-1260 .17
G-820A .11
G-853 .07
G-2376 3.72
G-2444 2.17
G-2147 .32
G-1316 1.10
G-1213 .78
G-616 .46
G-2395 .04
F-291 11.52
S-329 2.02
G-2034 4.03
G-1226 8.64
G-2031 3.76
G-2030 3.02
G-1224 3.95
G-1322 3.79
G-1636 4.76
G-1222 3.31
G-1225 5.73
G-561 8.19
G-617 6.45
G-2495 9.08
G-2033 6.62
G-2035 12.73
G-2032 6.77
G-1220 9.95
G-2443 9.10
G-1221 10.51
G-1223 10.60

'Weighted confidence polygon area =

7
0
0
0
0
0
0
0
0
0
0
0
0
0
9
0
2
6
0
0
0
0
0
0
0
2
1
3
0
5
0
1
0
0
0

confidence polygon area
total area covered by network

3.01
4.39
3.55
3.39
3.14
2.74
1.87
5.47
3.91
1.83
2.39
1.83
1.36
.89

2.86
1.81
1.44
1.79
2.65
1.88
2.11
1.72
2.59
1.09
2.50
2.93
1.76
2.00
2.49
2.72
1.32
3.29
1.80
2.05
1.91

100.

Unadjusted Adjusted STARE
ol Ant ,,. . .c

 . . i4 coefficient0 
coefficient4

-4.21
-4.08
-3.54
-3.34
-2.97
-2.63
-1.80
-1.75
-1.74
-1.51
-1.29
-1.05

-.90
-.85
-.34

.21

.59

.85
1.11
1.14
1.84
2.07
2.17
2.22
3.23
3.26
3.69
4.08
4.13
5.01
5.45
5.66
7.30
8.46
8.69

0.00
.13
.67
.87

1.24
1.58
2.41
2.46
2.47
2.70
2.92
3.16
3.31
3.36
3.87
4.42
4.80
5.06
5.32
5.35
6.05
6.28
6.38
6.43
7.44
7.47
7.90
8.29
8.34
9.22
9.66
9.87

11.51
12.67
12.90

2Redundancy = total number of times well is part of a redundant pair.

3Weighted temporal confidence interv;

4Unadiiifjtftd STARE rofiffiripnt -

temporal confidence interval
sampling interval

confidence polygon area ^ im
  rprlundni

temporal confidence
-irv -    i-         -       

interval
total area covered by network 

5Adjusted STARE coefficient = unadjusted STARE coefficient - lowest unadjusted STARE coefficient.

sampling interval
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SUMMARY AND CONCLUSIONS

A spatial and temporal analysis of continuous 
recorder ground-water network statistics was devel­ 
oped and performed on the ground-water level moni­ 
toring network in Broward County, Florida. This 
network was developed since 1940 with various wells 
being installed for different purposes. New canals and 
water-management structures, changing land use, and 
expansion of municipal well fields have resulted in 
wells no longer monitoring the situations for which 
they were originally designed. A need exists to evalu­ 
ate the network and determine future needs and alterna­ 
tive monitoring network designs. Most of the wells 
have a period of record beginning in October 1973, so 
a sufficient data base exists for a spatial and temporal 
statistical analysis.

Considering the sparseness of the Broward 
County network, the spatial analysis technique was 
designed to develop polygons for each well that repre­ 
sent the areal coverage of each well. These "confidence 
polygons (CPs)" were defined as the boundary created 
by radial lines oriented toward the other wells. The 
lengths of these lines were determined as the statisti­ 
cally estimated distances to the points at which levels 
can be predicted within a certain confidence criterion.

The CPs represent an approximate area moni­ 
tored by a well. However, the shape of any CP is 
affected by how many other wells are in the network. 
Therefore, the small variations in the boundary of a CP 
should not be given too much value. The wells at the 
outer edges of the network have no statistics exterior to 
the network for determination of CP radii, so the CPs 
of these wells tend to be truncated on their sides facing 
outward from the network. However, if the exterior 
wells are considered the boundary of the network, the 
CP area outside the network does not contribute to the 
network. The accuracy by which CPs truly represent 
the area monitored by the wells would be improved as 
the network is made more dense. Thus, the accuracy of 
the CPs is limited by the available data.

Analysis by CPs was applied to the Broward 
County network, using two different confidence crite­ 
ria and wet- and dry-season data. Results indicated the 
effective coverage of the network and locations where 
data are unavailable. Well pairs with CPs that overlap 
well locations were defined as "effectively redundant." 
Comparison of predicted CP areas with an additional 
noncontinuous recorder well indicated that the poly­ 
gons represent network coverage for the confidence 
criteria specified.

The temporal analysis technique considered 
time intervals as the temporal equivalent to the radial 
distances defined in the spatial analysis. Thus, based on 
the time varying data at each well, a time interval is 
determined beyond which water levels cannot be pre­ 
dicted within a given criterion. This "temporal confi­ 
dence interval" at each well corresponds to the 
maximum measurement interval allowable for the 
desired confidence. Application of this technique to the 
Broward County network for two different criteria 
indicated that the temporal confidence interval is usu­ 
ally on the order of days, and at some wells for some 
criteria is less than the existing data interval (1 day).

The temporal analysis technique highlights the 
analogies and interdependence between the spatial and 
temporal properties of water levels measured at wells. 
As a monitoring well can be considered to only accu­ 
rately predict water levels within a certain distance 
from the well (radius of the CP), it can also be consid­ 
ered to accurately predict water levels within a certain 
time interval after a measurement (temporal confidence 
interval). Both spatial and temporal considerations are 
important for accuracy in a water-level network.

A single coefficient reflecting both the spatial 
and temporal results was developed by combining all 
the results from the analyses. The STARE approach 
looks at three factors: the size of the CP, the number of 
times the well is part of a redundant pair, and the tem­ 
poral confidence interval. The STARE coefficients for 
each well in the Broward County network were calcu­ 
lated. Wells with high redundancy or small CPs were at 
the bottom of the ranking. The effects of removing the 
well with the lowest STARE coefficient ranking were 
analyzed, and the STARE coefficient ranking for the 
remaining wells was calculated.

Although all attempts were made to construct 
the STARE coefficient to be as objective as possible, it 
has subjective characteristics. The size of the CP is 
affected by the accuracy criteria used, and the redun­ 
dancy is affected by the accuracy criteria and the num­ 
ber of analyses considered. The accuracy criteria and 
the number of analyses considered must be selected 
such that CP size and redundancy are effective and pro­ 
portional counterweights in the development of the 
STARE coefficient. This requires some trial and error 
to determine the best scheme. Additionally, the types of 
analyses considered (seasonal and criteria used) must 
be based on the type and accuracy of data required from 
the network.
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APPENDIX 1. PROGRAMS AND FILES

The following programs and files are used in the analysis and are listed in the order they are used. The programs 
along with the input-output files are in bold characters.

SPATIAL ANALYSIS

list ASCII text file containing the names of the field data files.

listl ASCII text file containing the names of the well sites in the format recognized by GIS.

prepare FORTRAN program writes Unix script to calculate basic statistics for all well pairs; program writes to 
file implement.

implement Unix script, which, for each well pair, calls sort program to sort data, executes run to calculate statis­ 
tical parameters, and outputs to mainout.

sort FORTRAN program sorts data for one-to-one correspondence in dates. Two variants exist: sortd does 
the same for dry season data only and sortw for wet season.

run Unix script calls STATIT package program CORR to calculate basic statistics and SWNORM to 
implement Shapiro-Wilk normality test.

mainout ASCII text file of statistics output from implement. Not in convenient format. 
outsort FORTRAN program converts data in mainout to usable format in cordata.
cordata ASCII text file contains basic statistics in the order: first well name, second well name, number of 

concurrent days, first well variance, second well variance, covariance, correlation coefficient, correla­ 
tion significance t value, probability of significant correlation, R2 value for normal distribution test, 
and R2 value for lognormal distribution test.

distcheck FORTRAN program uses data in cordata to calculate best and worst fits for the normal and lognormal 
distributions. Output goes to terminal screen.

maxmin FORTRAN program uses data in cordata to calculate maximum and minimum values of number of 
concurrent days, variance, covariance, and correlation coefficient. Output goes to file maxminout. 
Prints to terminal screen values and wells without significant correlations.

vario FORTRAN program uses user input head accuracy with data in cordata to calculate variogram for 
each well pair, percent of distance between wells to point of desired accuracy for spherical, exponen­ 
tial, and Gaussian semivariogram functions. Output data in this order to file variout.

varioplot FORTRAN program uses data from variout to display variograms from each well to all others. Data 
for scatter plots (as in fig. 7) put out to fort.(well number) files.

eqstats FORTRAN program uses data in variout to calculate average differences between spherical-exponen­ 
tial equations and between exponential-Gaussian equations in calculated CP radii. The same compar­ 
isons are expressed as a percent. Results are sent to terminal screen.

verif FORTRAN program uses data from files named in user-defined input file to compare with data in the 
file table.2409. The name of the file that contains the input file names and criteria are specified by the 
user when executing. The deviations between the data sets are analyzed, and the percent of data that 
is within the criteria is output to the screen.

TEMPORAL ANALYSIS

chk.com Unix script puts field data files into (well name).chk files without headers or missing data points.

auto.com Unix script executed in STATIT. Using data in (well name).chk files, the autocorrelation and autoco- 
variance files are calculated. Output data goes to auto.dat.

autovar FORTRAN program takes user input autovariogram criteria and data in auto.dat. Autovariograms 
are calculated for each well (put out to fort.(well number) files) and maximum measurement inter­ 
vals (put out to autovar.out).
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PREPARE PROGRAM

C FORTRAN program writes Unix script to calculate basic 
C statistics for all well pairs, program writes to file 

C implement. 

C
character x*9
dimension x(37)
open (unit=20,file='list')
do 10 1=1,1000
read(20,100,end=ll) X(I)
imax=i

10 continue
11 continue 
100 format(a9)

close (20)
open (unit=21,file='implement')
write(21,*) 'In -s log fort.16'

do 20 i=l,imax-l
do 30 j=i+l,imax
write(21,*) 'rm ol'
write(21,*) 'rm o2'
write(21,*) 'rm output'
write(21,*) 'In -s ',x(i),' fort.11'

write(21,*) 'In -s ',x(j),' fort.12'

write(21,*) 'In -s ol fort.13'

write(21,*) 'In -s o2 fort.14'
write(21,*) 'In -s o3 fort.15'
write(21,*) '/lhome/edswain/stat/sort'
write(21,*) 'rm fort.11'
write(21,*) 'rm fort.12'

write(21,*) 'rm fort.13'
write(21,*) 'rm fort.14'
write(21,*) 'rm fort.15'

write(21,*) 'statit«*'
write(21,*) 'exec run'

write(21,200) 'quit'
write(21,300) '*'
write(21,*) 'echo ',x(i),' ',x(j),' »mainout'

write(21,*) 'cat output » mainout' 

30 continue 

20 continue
write(21,*) 'rm fort.??'

close(21) 

200 format(a4) 
300 format(al)

end
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SORT PROGRAM

C THIS PROGRAM SORTS THE DATA IN TWO FILE SO THAT
C THERE IS A 1 TO 1 CORRESPONDENCE IN DATES
C

INTEGER YR1,MOl,DAl,DATEl,YR2,MO2,DA2,DATE2
CHARACTER JUNK*29,WEL1*15,WEL2*15
DO 5 1=1,2
READ(11,*)
READ(12,*) 

5 CONTINUE
READ(11,300) JUNK,WEL1
READ(12,300) JUNK,WEL2
READ(11,*)
READ(12,*)
READ(11,*) YR1,M01,DA1,H1
READ(12,*) YR2,M02,DA2,H2 

10 CONTINUE
DATE1=10000*YR1+100*M01+DA1
DATE2=10000*YR2+100*M02+DA2
IF(DATEl.EQ.DATE2) GO TO 20
IF(DATEl.GT.DATE2) THEN
READ(12,*) YR2,M02,DA2,H2
GO TO 10
ELSE
READ(11,*) YR1,M01,DA1,H1
GO TO 10
END IF 

20 CONTINUE
IF(H1.GT.-1000.AND.H2.GT.-1000) THEN
WRITE(13,200) DATEl,HI
WRITE(14,200) DATE2,H2
END IF
READ(11,*,END=99) YRl,MOl,DAl, Hi
READ(12,*,END=99) YR2,M02,DA2,H2
DATE1=10000*YR1+100*M01+DA1
DATE2=10000*YR2+100*M02+DA2
GO TO 20 

99 CONTINUE
REWIND (13)
REWIND (14)
DO 30 1=1,ICOUNT
READ(13,200) DATEl,HI
READ(14,200) DATE2,H2
HDEV=H1-H2
HDEVL=LOG(H1-H2+100. )
WRITE(15,400) HDEV,HDEVL 

30 CONTINUE
DO 40 1=1,99999
READ(16,*,END=50) 

40 CONTINUE 
50 CONTINUE

WRITE(16,*) WEL1,WEL2,ICOUNT 
100 FORMAT(I4,111,I13,F21.0) 
200 FORMAT(I10,F16.2) 
300 FORMAT(A29,A15) 
400 FORMAT(2F16.5)

END
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RUN SCRIPT

/* Unix script calls STATIT package program CORR, */
/* to calculate basis statistics, and SWNORM to */
/* implement Shapiro-Wilk normality test. */
clear
log output
read ol into a,xl /CASES = 9999
read o2 into d,x2 /CASES = 9999
read o3 into x3,x4 /CASES = 1000
corr xl,x2 /COV /TEST
swnorm x3
swnorm x4
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OUTSORT PROGRAM

C FORTRAN program converts data in mainout 

C to usable format in cordata.

character charl*19

open(unit=10,file='mainout')

open(unit=11,file='cordata') 

5 continue

read(10,100,end=70) charl

do 10 1=1,12

read(10,*) 

10 continue

read(10,200) ncases

do 20 1=1,4

read (10,*) 

20 continue

read(10,300) varl

read(10,400) covar,var2

do 30 1=1,10

read(10,*) 

30 continue

read(10,500) corr,t,pt

do 40 1=1,12
read(10,*) 

40 continue

read(10,600) rnorm

do 50 1=1,37

read(10,*) 

50 continue

read(10,600) rlnorm

write(11,700) charl,ncases,varl,var2,covar,corr, t,pt, 

1 rnorm,rlnorm

do 60 1=1,26

read(10,*,end=70) 

60 continue

go to 5 

70 continue

close(lO)

close(ll) 

100 format(a!9) 

200 format(46x,14) 

300 format(26x,f9.0) 

400 format(26x,f9.0,lx,f9.0) 

500 format(25x,f7.0,7x,f6.0,16x,f7.0) 

600 format(44x,f6.0) 

700 format(a!9,Ix,14,Ix,8f9.5)

end
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DISTCHECK PROGRAM

C FORTRAN program uses data in cordata to calculate
C best and worst fits for the normal and lognormal
C distributions. Output goes to terminal screen.

open(unit=10, file=' cordata' )
ic=0
icl=0
bestfn=-9.
bestfl=-9.
worsfn=9 .
worsf 1=9 .
ave=0 .
avel=0.
save=0 .
savel=0 .
i count =0
do 10 i=l, 9999999
read(10,100,end=ll) fit,fitl
icount =icount+l
ave=ave+f it
avel=avel+f itl
save=save+f it**2
savel=savel+f it**2
if (fit.gt.fitl) then
ic=ic+l
else

endif
if (fit.gt.bestfn) bestfn=fit 
if (f it . It .worsfn) worsfn=fit 
if (fitl.gt.bestfl) bestfl=fitl 
if (fitl.lt .worsfl) worsfl=fitl

10 continue
11 continue

ave=ave/ float ( i count) 
avel=avel/ float (icount) 
save=save/ float ( icount) 
savel=savel/f loat ( icount) 
var=save-ave**2 
varl=savel-avel**2
write (*,*) ic, ' fitting normal distribution' 
write(*,*) icl, ' fitting log-normal distribution' 
write (*,*) 'best fit for normal data = ',bestfn 
write (*,*) 'worst fit for normal data = ', worsfn 
write (*,*) 'best fit for log-normal data = ',bestfl 
write (*,*) 'worst fit for log-normal data = ', worsfl 
write (*,*) 'normal data mean = ',ave, ' variance = ' , var 
write (*,*) 'lognormal data mean = ',avel, 

1 ' variance = ',varl
100 format (Six, f 7. 0,2x,f 7.0) 

end
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MAXMIN PROGRAM

C FORTRAN program uses data in cordata to calculate
C maximum and minimum values of; number of concurrent
C days, variance, covariance, and correlation coefficient.
C Output goes to file maxminout. Prints to terminal screen
C values and wells without significant correlations.

character charl*19 
open(unit=10,file='cordata') 
nmax=0 
nmin=999999 
varmax=-999999 
varmin=999999 
comax=-999999 
comin=999999 
cormax=-999999 
cormin=999999 
tmax=-999999 
tmin=999999 
ptmax=-999999 
ptmin=999999 
do 10 i=l,9999999
read(10,100,end=ll) charl,ncases,varl,var2,covar,corr,t,pt, 

1 rnorm,rlnorm
if(ncases.gt.nmax) nmax=ncases 
if(ncases.It.nmin) nmin=ncases 
if(varl.gt.varmax) varmax=varl 
if(var2.gt.varmax) varmax=var2 
if(varl.It.varmin) varmin=varl 
if(var2.It.varmin) varmin=var2 
if(covar.gt.comax) comax=covar 
if(covar.It.comin) comin=covar 
if(corr.gt.cormax) cormax=corr 
if(corr.It.cormin) cormin=corr 
if(t.gt.tmax) tmax=t 
if(t.It.tmin) tmin=t 
if(pt.gt.ptmax) ptmax=pt 
if(pt.It.ptmin) ptmin=pt 
if(pt.gt.0.10) write(*,*) charl,pt

10 continue
11 continue

close (10)
open(unit=11,file='maxminout')

write(11,200) nmax,nmin,varmax,varmin,comax,comin,cormax, 
1 cormin,tmax,tmin,ptmax,ptmin
close (11)

100 format(a!9,lx,i4,lx,8f9.5) 
200 format(14,Ix,14,/,2f9.5,/,2f9.5,/,2f9.5,/,2f9.5,/,2f9.5)

end
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VARIO PROGRAM

C FORTRAN program uses user input head accuracy with
C data in cordata to calculate: variogram for each
C well pair, percent of distance between wells to
C point of desired accuracy for spherical,
C exponential, and Gaussian semi-variogram functions.
C Outputs data in this order to file variout.

dimension wdat(50),wdis(50)
character we11*9,we12*9,we13*9,we14*9,wdat * 9,wdi s * 9
open(unit=10,f ile ='cordata')
open(unit=20,file='variout')
open(unit=25,file='varioutl')
open(unit=30,file='list')
open(unit=40,file='listl' )
write(*,*) ' ENTER ACCURACY OF STAGE'
read(*,*) ace
gamma=((ace/1.6448)**2)/2.
do 5 i=l,36
read(30,200)wdat(i)
read(40,200)wdis(i) 

5 continue
close(30)
close(40)
do 10 i=l,9999999
read(10,*,end=ll) well,we!2,ncases,varl,var2,covar, 

1 corr,t,tprob
var=(varl+var2)/2.
semiva=var-covar 

c
c * a spherical semivariogram is tried * 
c

a=l. 
20 continue

al=a
a=(1.5*a**2-0.5)*var/semiva
a=(abs(a))**(!./3.)
if(abs((a-al)/a).gt.0.001) go to 20
xl = l. 

30 continue
xll=xl
xl=l./(1.5/a-0.5*xl**2/a**3)*gamma/var
if(abs((xl-xll)/xl).gt.0.001) go to 30 

c
c * an exponential semivariogram is tried * 
c

omgw=l.-semiva/var
if(omgw.lt.0.000001) then
x2=99999.
go to 35
endif
a=-l./(log(omgw))
x2=-a*log(1-gamma/var) 

35 continue 
c
c * a gaussian semivariogram is tried * 
c

omgw=l.-semiva/var
omgwl=l.-gamma/var
if(omgw.gt.0.99999.or.omgwl.gt.0.99999.or. 

1 omgw.It.0.000001.or.omgwl.lt.0.000001) then
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x3=99999.
go to 50
endif
a=l./((-log(omgw))**0.5)
x3=a*sqrt(-log(omgwl)) 

50 continue
do 40 j=l,36
if(well.eq.wdat(j)) we!3=wdis(j)
if(we!2.eq.wdat(j)) we!4=wdis(j) 

40 continue
if(tprob.gt.0.10) go to 9
write (20,100) we!3,we!4,semiva,xl,x2,x3
write(25,300) wel3,we!4,xl

9 continue
10 continue
11 continue

close(lO)
close(20)
close(25)

100 format(2alO,Ix,4f8.5) 
200 format(a9) 
300 format(a9,',',a9,',',f7.5)

end
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VARIOPLOT PROGRAM

C FORTRAN program uses data from variout to display
C variograms from each well to all others. Data for scatter
C plots put out to fort. (well number) files.
C

character list*9, listl*9,well*9, wel2*9,wel3*9,we!4*9, char*3 
dimension listl(50) ,well(2000) ,we!2(2000) ,dist (2000) ,

1 cdist (50, 50) ,vario(2000) , list (50) ,we!3 (2000) ,we!4(2000) ,
2 cvario(50, 50) 
integer ijmax(BO) 
open (unit=10, f ile='variout ' ) 
open (unit=20, file='list' ) 
open (unit=30, file= f listl') 
open (unit=40, f ile= ' distances ' ) 
do 10 i=l,36 
read(30,100) listl(i) 
read(20,100) list(i) 

10 continue 
maxd=0
do 20 k=l, 999999
read(40,200,end=2l) well(k) ,we!2(k) ,dist(k) 
maxd=maxd+ 1

20 continue
21 continue 

maxv= 0
do 30 k=l, 999999
read(10,300,end=31) we!3 (k) ,we!4(k) ,vario(k) 
maxv=maxv+ 1

30 continue
31 continue

do 70 i=l,36 
i j max ( i ) = 0 
do 60 j=l,36 
if(i.eq.j) go to 60

if(i.gt.j) then

endif
do 50 k=l,maxv
if (we!3(k) .eq.listl(ii) .and.we!4(k) .eq.listl ( j j ) ) then
do 40 1=1, maxd
if (well (1) .eq.listl(ii) .and.we!2(l) .eq.listl (jj ) ) then
i j max ( i ) = i j max ( i ) + 1
cdist (i, ijmax( i) ) =dist (1)
cvario ( i , ijmax(i) ) =vario (k)
endif 

40 continue
endif

50 continue 
60 continue 
70 continue

do 90 i=l,36
do 80 j = 1 , i j max ( i ) - 1
do 75 k=j+l, ijmax(i)
if (cdist ( i, k) .It .cdist (i, j ) ) then
buf =cdist ( i, k)
cdist (i, k) =cdist (i, j )
cdist (i, j ) =buf
buf =cvario ( i , k)
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cvario(i,k)=cvario(i, j )
cvario(i,j)=buf
endif

75 continue 
80 continue 
90 continue

close(lO)
close(20)
close(30)
close(40)
do 92 1=1,36
open(unit=i+10)
do 95 j=l,ijmax(i)
write(i + 10,*) cdist(i,j),cvario(i, j) 

95 continue
close(i+10) 

92 continue 
100 format(a9)
200 format(Ix,a9,2x,a9,4x,f10.0) 
300 format(Ix,a9,Ix,a9,f10.0,)

end
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EQSTATS PROGRAM

C FORTRAN program uses data in variout to
C calculate average differences between
C spherical-exponential equations and between
C exponential-Gaussian equations in calculated
C CP radii. The same comparisons are expressed as
C a percent. Results are sent to terminal screen.
C

open(unit=10,file='variout')
d!2=0.
d23=0.
p!2=0.
p23=0.
icount=0
do 10 1=1,999999
read(10,100,end=ll,err=9) sphere,expon,gauss
d!2=d!2+(sphere-expon)
d23=d23+(expon-gauss)
p!2=p!2+2.*(sphere-expon)/(sphere+expon)
p23=p23+2.*(expon-gauss)/(expon+gauss)
icount=icount+l

9 continue
10 continue
11 continue

close(lO)
dl2=d!2/float(icount)
d23=d23/float(icount)
p!2=p!2/float(icount)
p23=p23/float(icount)
write(*,*) d!2,d23,p!2,p23 

100 format(30x,3f8.0)
end
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VERIF PROGRAM

C FORTRAN program uses data from files named
C in user defined input file to compare with data
C in the file table.2409. The name of the file that
C contains the input file names and criteria is
C specified by the user when executing. The
C deviations between the data sets are analyzed and
C the percent of data that is within the criteria
C is output to the screen.
C

DIMENSION H1A(8000),H2A(8000)
INTEGER YR1,MO1,DAl,DATE1,YR2,MO2,DA2,DATE2
CHARACTER JUNK*29,WEL1*15,WEL2*15,INPUT*9 

1 CONTINUE
READ(*,*,END=500) INPUT,CRIT
OPEN(UNIT=11,FILE='table.2409')
OPEN(UNIT=12,FILE=INPUT)
DO 5 1=1,2
READ(11,*)
READ(12,*) 

5 CONTINUE
READ(11,300) JUNK,WEL1
READ(12,300) JUNK,WEL2
READ(11,*)
READ(12,*)
ICOUNT=0
H1AVE=0.
H2AVE=0.
READ(11,*) YR1,M01,DA1,H1
READ(12,*) YR2,MO2,DA2,H2 

10 CONTINUE
DATE1=10000*YR1+100*MO1+DA1
DATE2=10000*YR2+100*MO2+DA2
IF(DATE1.EQ.DATE2) GO TO 20
IF(DATE1.GT.DATE2) THEN
READ(12,*,END=99) YR2,MO2,DA2,H2
GO TO 10
ELSE
READ(11,*,END=99) YR1,MO1,DAl,HI
GO TO 10
END IF 

20 CONTINUE
IF(H1.GT.-1000.AND.H2.GT.-1000) THEN
ICOUNT=ICOUNT+1
H1A(ICOUNT)=H1
H2A(ICOUNT)=H2
H1AVE=H1AVE+H1
H2AVE=H2AVE+H2
END IF
READ(11,*,END=99) YRl,MOl,DAl,HI
READ(12,*,END=99) YR2,MO2,DA2,H2
GO TO 10 

99 CONTINUE
H1AVE=H1AVE/FLOAT(ICOUNT)
H2AVE=H2AVE/FLOAT(ICOUNT)
IC = 0
DO 30 1=1,ICOUNT
IF(ABS(H1A(I)-H1AVE-H2A(I)+H2AVE).GT.CRIT) 

1 IC=IC+1 
30 CONTINUE

WRITE(*,600) INPUT,CRIT,(FLOAT(ICOUNT)-FLOAT(1C))*100./
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1 FLOAT(ICOUNT)
CLOSE(11)
CLOSE(12)
GO TO 1 

500 CONTINUE
100 FORMAT(I4,111,I13,F21.0) 
200 FORMAT(110,F16.2) 
300 FORMAT(A29,A15) 
400 FORMAT(2F16.5) 
600 FORMAT(A10,1X,F5.2,1X,F4.1)

END
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CHK.COM SCRIPT

/* 

/*
Unix script puts field data files into (well name).chk */ 

files without headers or missing data points. */

cat O91.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v 'W" > O91.chk 

cat gl213.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g!213.chk 

cat gl215.dat I grep -v 123456E201 grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v 'W > g!215.chk 

cat gl220.dat I grep -v 123456E201 grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g!220.chk 

cat gl221.dat I grep -v 123456E201 grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g!221.chk 

cat gl222.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g!222.chk 

cat gl223.dat I grep -v 123456E201 grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g!223.chk 

cat gl224.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g!224.chk 

cat gl225.dat I grep -v 123456E201 grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g!225.chk 

cat gl226.dat I grep -v 123456E201 grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g!226.chk 

cat gl260.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g!260.chk 

cat gl262.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g!262.chk 

cat gl315.dat I grep -v 123456E201 grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g!315.chk 

cat gl316.dat I grep -v 123456E201 grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g!316.chk 

cat gl322.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g!322.chk 

cat gl472.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g!472.chk 

cat gl473.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g!473.chk 

cat gl636.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g!636.chk 

cat g2030.dat I grep -v 123456E201 grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g2030.chk 

cat g2031.dat I grep -v 123456E201 grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g2031.chk 

cat g2032.dat I grep -v 123456E201 grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g2032.chk 

cat g2033.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g2033.chk 

cat g2034.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g2034.chk 

cat g2035.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g2035.chk 

cat g2147.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g2147.chk 

cat g2376.dat I grep -v 123456E201 grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g2376.chk 

cat g2395.dat I grep -v 123456E201 grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g2395.chk 

cat g2443.dat I grep -v 123456E201 grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g2443.chk 

cat g2444.dat I grep -v 123456E201 grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g2444.chk 

cat g2495.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g2495.chk 

cat g561.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g561.chk 

cat g616.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g616.chk 

cat g617.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g617.chk 

cat g820a.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g820a.chk 

cat g853.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > g853.chk 

cat s329.dat I grep -v 123456E20 I grep -v TIME I grep -v YEAR I grep -v "A$" I grep -v A-V" > s329.chk
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AUTO.COM SCRIPT

/* Unix script executed in STATIT. Using data in */

/* (well name).chk files, the autocorrelation and */

/* autocovariance files are calculated. Output data */

/* goes to auto.dat. */

log auto.log

clear

read f291.chk into year,month,day,level /cases = 7000

delete year month day

acf level /nolist /scor /scov

let well = 1

delete level

write auto.dat all /nodose

clear

read g!213.chk into year,month,day,level /cases = 7000

delete year month day

acf level /nolist /scor /scov

let well = 1

delete level

write * all /noclose

clear

read g!215.chk into year,month,day,level /cases = 7000

delete year month day

acf level /nolist /scor /scov

let well = 1

delete level

write * all /noclose

clear

read g!220.chk into year,month,day,level /cases = 7000

delete year month day

acf level /nolist /scor /scov

let well = 1

delete level

write * all /noclose

clear

read g!221.chk into year,month,day,level /cases = 7000

delete year month day

acf level /nolist /scor /scov

let well = 1

delete level

write * all /noclose

clear

(CONTINUES FOR REMAINING WELLS)
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AUTOVAR PROGRAM

C FORTRAN program takes user input
C autovariogram criteria and data in auto.dat.
C Autovariograms are calculated for each well
C (put out to fort.(well number) files) and
C maximum sampling intervals (put out to autovar.out

character well*9
write(*,*) 'enter autovariogram criteria'
read(*,*) crit
open(unit=90,file='auto.dat')
open(unit=91,file='autovar.out')
open(unit=92,file='listl')
iflag=l
icount=0
iicoun=10
autola=0.0
do 10 1=1,999999
read(90,100,end=20) corr,cov,icheck
if(icheck.ne.0) then
if (iflag.eq.O) write(91 f *) 

1 'For well ',well,' insufficient data'
iflag=0
icount=0
iicoun=iicoun-f-l
read (92,300) well
write(iicoun,200) 0,0.0
autola=0.0
endif
icount = icount-f-l
autova=2*cov*(1/corr-l)
write(iicoun,200) icount,autova
if(autova.gt.crit.and.iflag.eq.0) then
write (91, 400) well, f loat (icount-1) 4-(crit-autola) / 

1 (autova-autola)
iflag=l
endif
autola=autova 

10 continue 
20 continue

close(90)
close(91)
close(92)

100 format(2f8.0,i2) 
200 format(i5,lx,f7.3) 
300 format(a9) 
400 format(a9,Ix,f5.2)

end
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APPENDIX 2. DERIVATION FOR LOG-NORMAL VARIATE

To describe the standard variate Z for a log-normal transformation, the following derivation was made. From Yevjevich 
(1982), the relation between the variance *¥, the mean 5, and the variance of the log of the data ^ is:

H' = 52 (e i'L -l) (Al) 

With rearrangement, this becomes:

(A2)

Also, from Yevjevich (1982), the relation of the above variables with the mean of the log of the data 5L is:

6 = e ( L+ L/ } (A3) 

With rearrangement, this becomes:

8L = In8-^- (A4) 

Combining equations A2 and A4 yields:

ln ff + 1 )

8T = ln&- ^-  - (A5) 
L 2

The definition of the variate Z for a log-normal distribution is:

(lnS.-8L ) (Ing )-g 
r-, i L> max v max 7 L t K f\  (Ao;

where the subscript max indicates the values corresponding to 8 - 5 = e, the maximum allowable error in estimation. Substitut­ 
ing equations A2 and A5 into equation A6 yields:

(*¥ \
InU + l

InS -lnS +max O
Z =      .     (A7)

Because e = 8,^ - 5, then 8,^^ = e + 5. Combining this expression and equation A7 and multiplying the numerator and 
denominator by two yields:

21n(e + 8) - 

Z =        .     - (A8)
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Bringing the logarithmic terms together produces:

Z =

2 In 
V U

(A9)

Final rearrangement yields:

Z = /In I == 52

In

, i In - + 12
(A10)

This is the form used in equation 18 in the report.
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